Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Cabin heater, Caetano, EF Calcium carbonate, fouling of heat exchangers by, Calcium sulphate, fouling of heat exchangers by, CALFLO, heat transfer media, Calorically perfect gas, CANDU Reactor, fouling problems in, Carbon dioxide: Carbon disulfide: Carbon monoxide: Carbon steel: Carbon-manganese steels Carbon-molybdenum steels, Carbon tetrachloride: Carbonyl sulfide: Carboxylic acids: Carnot cycle in refrigeration, Carnot factor, Carreau fluid (non-Newtonian), Carryover of solids in fluidized beds, Cashman, B L, Cast iron, thermal and mechanical properties, Cavitation as source of damage in heat exchangers, Cell method, for heat exchanger effectiveness, Cement kilns, CEN code for pressure vessels, Centrifugal dryer, Ceramics Certification of heat exchangers, Chan, S H, Channel emissivity, Chapman-Rubescin formula for viscosity variation with temperature, Chemical exergy, Chemical formulas of commonly used fluids Chemical industry, fouling of heat exchangers in, Chemical reactions, exergy analysis of, Chemical reaction fouling, Chen correlation for forced convective boiling, Chen method, for enthalpy of vaporisation, Chenoweth, J M, Chevron troughs as corrugation design in plate heat exchangers, Chillers, construction features of, Chilton-Colburn analogy, Chisholm, D Chisholm correlations: Chlorine: Chloroacetic acid: Chlorobenzene: Chlorobutane: Chlorodifluoromethane (see Refrigerant 22) 1-Chloro-1,1-difluoroethane (Refrigerant 142b): Chloroethane (Refrigerant 160): Chloromethane (Refrigerant 40): Chloropentane: 1,2-Chloropentafluoroethane (Refrigerant 115): Chloroprene (2-Chloro-1,3-butadiene): 1-Chloropropane: 2-Chloropropane: m-Chlorotoluene: o-Chlorotoluene: Chlorotrifluoroethylene: Chlorotrifluoromethane (see Refrigerant 13) Chromium-molybdenum steels, Chudnovsky, Y, Chugging flow (gas-liquid), in shell-and-tube heat exchangers, Chung et al method, for viscosity of low pressure gases, Church and Prausnitz methods: Churchill, S W, Churchill and Chu correlations for free convective heat transfer: Churn flow, regions of occurrence of, Circles, radiative heat transfer shape factors between parallel coaxial, Circular girth flanges, design according to ASME VIII code, Circulating fluidized beds, Circulation, modes of in free convection: in enclosures heated from below, CISE correlations for void fractions, Clausius-Clapeyron relationship: Cleaning: Climbing film evaporator, Closed circuit cooling towers, Coalescence of bubbles in fluidized beds, Coatings for corrosion protection Cocurrent flow: Codes, mechanical design: Cogeneration Colburn and Drew method for binary vapor condensation, Colburn and Hougen method for condensation in presence of noncondensable gases Colburn equation for single-phase heat transfer outside tube banks, Colburn j factor: Colebrook-White equation for friction factor in rough circular pipe, Coles, law of the wake, Collier, J G, Combined free and forced convection heat transfer: Combined heat and mass transfer, Combining flow, loss coefficients in, Combustion model for furnaces, Compact heat exchangers (see Plate fin heat exchangers) Compartment dryers, Composite curves, in the pinch analysis method for heat exchanger network analysis: Compressed liquids, density of: Compressible flow: Compression, exergy analysis of Compressive stress, in heat exchanger tubes, Computer-aided design, of evaporators, Computer program for Monte Carlo calculations of radiative heat transfer, Computer simulation, of fouling, Computer software for mechanical design, Concentration, choice of evaporator type for, Concentric spheres, free convective heat transfer in, Concurrency corrections in plate heat exchangers, Condensation: Concrete, lightweight, submerged combustion system for, Condensation curves: Condenser/preheater tubes, in multistage flash evaporation, Condensers: Conduction, heat: Conductors, thermal conductivity of, Cones, under internal pressure, EN13445 guidelines for, Cones, vertical: Conical shells, mechanical design of: Conjugate radiation interactions Connors equation for fluid elastic instability, Conservation equations: Constantinon and Gani method, for estimating normal boiling point, Contact angle, Contact resistance: Continuity equation: Continuum model, for fluids, Continuum theories, for non-Newtonian fluids, Contraction, sudden, pressure drop in: Control: Control volume method, in finite difference solutions for conduction, Convection, interaction of radiation with, Convection effects, on heat transfer in kettle reboilers, Convective heat transfer, single-phase: Conversion factors: Conveyor, gravity: Cooling curves, in condensation, Cooling towers: Cooling water fouling, Cooper correlation, for nucleate boiling, Cooper, Anthony, Copper, thermal and mechanical properties, Copper alloys, Correlation, general nature of, Corresponding states principle Corrosion: Corrugation design, for plate heat exchangers Costing of heat exchangers: Countercurrent flow: Coupled thermal fields, in transient conduction, Cowie, R C, Crank-Nicolson differencing scheme, in finite difference method, Creeping flow, in combined free and forced convection around immersed bodies, m-Cresol: o-Cresol: p-Cresol: Crevice corrosion, in stainless steels, Critical constants Critical density, of commonly used fluids, Critical flow, in gas-liquid systems, Critical heat flux: Critical pressure: Critical Rayleigh number, in free convection, Critical temperature: Critical velocity, in stratification in bends and horizontal tubes, Critical volume (see also Critical density) Cross counterflow heat exchangers, Crossflow: Crude oil, fouling of heat exchangers: Cryogenic plant, entropy generation in, Crystallization Crystallization fouling, Curved ducts: Cut-and-twist factor, in enhancement of heat transfer in double pipe heat exchangers, C-value method for heat exchanger costing, Cycling, of expansion bellows, Cyclobutane: Cyclohexane: Cyclohexanol: Cyclohexene: Cyclopentane: Cyclopentene: Cyclopropane: Cylinders: Cylindrical contacts, thermal contact resistance in, Cylindrical coordinates, finite difference equations for conduction in, Cylindrical shell, analytical basis of code rules for,

Index

HEDH
A B C
Cabin heater, Caetano, EF Calcium carbonate, fouling of heat exchangers by, Calcium sulphate, fouling of heat exchangers by, CALFLO, heat transfer media, Calorically perfect gas, CANDU Reactor, fouling problems in, Carbon dioxide: Carbon disulfide: Carbon monoxide: Carbon steel: Carbon-manganese steels Carbon-molybdenum steels, Carbon tetrachloride: Carbonyl sulfide: Carboxylic acids: Carnot cycle in refrigeration, Carnot factor, Carreau fluid (non-Newtonian), Carryover of solids in fluidized beds, Cashman, B L, Cast iron, thermal and mechanical properties, Cavitation as source of damage in heat exchangers, Cell method, for heat exchanger effectiveness, Cement kilns, CEN code for pressure vessels, Centrifugal dryer, Ceramics Certification of heat exchangers, Chan, S H, Channel emissivity, Chapman-Rubescin formula for viscosity variation with temperature, Chemical exergy, Chemical formulas of commonly used fluids Chemical industry, fouling of heat exchangers in, Chemical reactions, exergy analysis of, Chemical reaction fouling, Chen correlation for forced convective boiling, Chen method, for enthalpy of vaporisation, Chenoweth, J M, Chevron troughs as corrugation design in plate heat exchangers, Chillers, construction features of, Chilton-Colburn analogy, Chisholm, D Chisholm correlations: Chlorine: Chloroacetic acid: Chlorobenzene: Chlorobutane: Chlorodifluoromethane (see Refrigerant 22) 1-Chloro-1,1-difluoroethane (Refrigerant 142b): Chloroethane (Refrigerant 160): Chloromethane (Refrigerant 40): Chloropentane: 1,2-Chloropentafluoroethane (Refrigerant 115): Chloroprene (2-Chloro-1,3-butadiene): 1-Chloropropane: 2-Chloropropane: m-Chlorotoluene: o-Chlorotoluene: Chlorotrifluoroethylene: Chlorotrifluoromethane (see Refrigerant 13) Chromium-molybdenum steels, Chudnovsky, Y, Chugging flow (gas-liquid), in shell-and-tube heat exchangers, Chung et al method, for viscosity of low pressure gases, Church and Prausnitz methods: Churchill, S W, Churchill and Chu correlations for free convective heat transfer: Churn flow, regions of occurrence of, Circles, radiative heat transfer shape factors between parallel coaxial, Circular girth flanges, design according to ASME VIII code, Circulating fluidized beds, Circulation, modes of in free convection: in enclosures heated from below, CISE correlations for void fractions, Clausius-Clapeyron relationship: Cleaning: Climbing film evaporator, Closed circuit cooling towers, Coalescence of bubbles in fluidized beds, Coatings for corrosion protection Cocurrent flow: Codes, mechanical design: Cogeneration Colburn and Drew method for binary vapor condensation, Colburn and Hougen method for condensation in presence of noncondensable gases Colburn equation for single-phase heat transfer outside tube banks, Colburn j factor: Colebrook-White equation for friction factor in rough circular pipe, Coles, law of the wake, Collier, J G, Combined free and forced convection heat transfer: Combined heat and mass transfer, Combining flow, loss coefficients in, Combustion model for furnaces, Compact heat exchangers (see Plate fin heat exchangers) Compartment dryers, Composite curves, in the pinch analysis method for heat exchanger network analysis: Compressed liquids, density of: Compressible flow: Compression, exergy analysis of Compressive stress, in heat exchanger tubes, Computer-aided design, of evaporators, Computer program for Monte Carlo calculations of radiative heat transfer, Computer simulation, of fouling, Computer software for mechanical design, Concentration, choice of evaporator type for, Concentric spheres, free convective heat transfer in, Concurrency corrections in plate heat exchangers, Condensation: Concrete, lightweight, submerged combustion system for, Condensation curves: Condenser/preheater tubes, in multistage flash evaporation, Condensers: Conduction, heat: Conductors, thermal conductivity of, Cones, under internal pressure, EN13445 guidelines for, Cones, vertical: Conical shells, mechanical design of: Conjugate radiation interactions Connors equation for fluid elastic instability, Conservation equations: Constantinon and Gani method, for estimating normal boiling point, Contact angle, Contact resistance: Continuity equation: Continuum model, for fluids, Continuum theories, for non-Newtonian fluids, Contraction, sudden, pressure drop in: Control: Control volume method, in finite difference solutions for conduction, Convection, interaction of radiation with, Convection effects, on heat transfer in kettle reboilers, Convective heat transfer, single-phase: Conversion factors: Conveyor, gravity: Cooling curves, in condensation, Cooling towers: Cooling water fouling, Cooper correlation, for nucleate boiling, Cooper, Anthony, Copper, thermal and mechanical properties, Copper alloys, Correlation, general nature of, Corresponding states principle Corrosion: Corrugation design, for plate heat exchangers Costing of heat exchangers: Countercurrent flow: Coupled thermal fields, in transient conduction, Cowie, R C, Crank-Nicolson differencing scheme, in finite difference method, Creeping flow, in combined free and forced convection around immersed bodies, m-Cresol: o-Cresol: p-Cresol: Crevice corrosion, in stainless steels, Critical constants Critical density, of commonly used fluids, Critical flow, in gas-liquid systems, Critical heat flux: Critical pressure: Critical Rayleigh number, in free convection, Critical temperature: Critical velocity, in stratification in bends and horizontal tubes, Critical volume (see also Critical density) Cross counterflow heat exchangers, Crossflow: Crude oil, fouling of heat exchangers: Cryogenic plant, entropy generation in, Crystallization Crystallization fouling, Curved ducts: Cut-and-twist factor, in enhancement of heat transfer in double pipe heat exchangers, C-value method for heat exchanger costing, Cycling, of expansion bellows, Cyclobutane: Cyclohexane: Cyclohexanol: Cyclohexene: Cyclopentane: Cyclopentene: Cyclopropane: Cylinders: Cylindrical contacts, thermal contact resistance in, Cylindrical coordinates, finite difference equations for conduction in, Cylindrical shell, analytical basis of code rules for,
D E F G H I J K L M N O P Q R S T U V W X Y Z

Flow and Pressure Drop in Annular Ducts with One Rotating Surface

DOI 10.1615/hedhme.a.000151

2.2.9 Flow and pressure drop in annular ducts with one rotating surface

A. Introduction

Situations in which flows occur between a rotating inner cylinder and a stationary outer cylinder are found widely in industry (e.g. in motor shafts, in vehicle transmissions, in oil drilling operations etc.). The presence of rotation may have a large effect on the flow and heat transfer. Flow effects are discussed in this present section and the associated heat transfer behavior is discussed in Section 183.

The flow between concentric cylinders with rotation of inner one can be considered a composition of three basic flows: Couette, Poiseuille and Taylor, which can be either laminar or turbulent. As illustrated in Figure 1, the Couette flow is caused by rotation of inner cylinder and the Poiseuille flow takes place due to pressure difference between channel inlet and outlet. Taylor flow appears due to centrifugal forces after a critical rotation condition is achieved and is characterized by a sequence of toroidal vortices, which are distributed tangentially and with alternate directions.

Figure 1 Schematic illustration of possible flow types inside of annular channels with rotation of the inner cylinder: a) Couette flow, b) Taylor flow and c) Poiseuille flow

Kaye and Elgar (1957) show experimentally that, depending on axial and tangential velocities, these basic flows will form four different regimes: laminar, laminar with Taylor vortices, turbulent and turbulent with Taylor vortices [see Figure 2(a)]. When the flow is laminar, the axial and tangential components of the fluid velocity are independent of each other. In this case, it is clear that rotation will not influence axial friction losses. On the other hand, when the Taylor vortices appear in the flow due to centrifugal forces — after a critical rotation — or when the flow is turbulent, these fluid velocity components are not independent anymore. Consequently, in these regimes the rotation of the inner cylinder is expected to influence axial friction losses. Actually, several authors confirmed the influence of rotation on friction factor. Yamada (1962), for instance, shows that there is an increase in the friction factor as rotation rate, which is represented by Taylor number, is increased. In Figure 2(b), horizontal lines represent friction factor values obtained with usual channel flow channel flow correlations. When the flow is laminar [Rez = 1000, Figure 2(b)] there is a sudden increase at a certain critical tangential velocity. At this point — that corresponds to the appearance of Taylor vortices — the velocity components abruptly stop being independent of each other and the rotation of inner cylinder becomes important. For turbulent flow, velocity components are always dependent of each other and, therefore, the rotation influence is less important than in laminar case. The higher is the axial velocity the lower is the influence of the rotation.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here