Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:

Index

HEDH
A B C D E F G H I J K L M N
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:
O P Q R S T U V W X Y Z

Forced Convection in Ducts

DOI 10.1615/hedhme.a.000168

2.5.1 Forced convection in ducts

A. Introduction

When fluids flow at very low velocities, all the individual particles are flowing in parallel lines. This type of flow is called laminar flow. If a fluid stream enters a duct with a uniform velocity a velocity profile develops as the fluid moves down the tube, with the velocity at the duct wall being zero. At a sufficient distance downstream from the inlet, the velocity pattern becomes fixed. The shape of the velocity distribution curve is parabolic for flow in a tube or between parallel plates.

If the velocity of the fluid is gradually increased, there will be a point at which the fluid no longer flows in parallel lines, but by a series of eddies that result in a complete mixing of all parts of the flow except those immediately adjacent to the wall. This type of flow is called turbulent flow. The Reynolds number at which the flow changes from laminar to turbulent is the "critical Reynolds number" Re, where Re = uρd /η where u is the fluid average velocity, ρ its density, η its viscosity and d the channel equivalent diameter. The value of the critical Reynolds number in round tubes is between 2,100 and 2,300. In long rectangular ducts and annular spaces, the transition from laminar to turbulent flow also starts at a Reynolds number of 2,100 when the hydraulic diameter of the duct is used as the characteristic geometric dimension in calculating the Reynolds number.

At Reynolds numbers greater than 104, the flow is fully turbulent. Between the lower and upper limits lies the zone of transition from laminar to turbulent flow. These limits are affected by the type of entry, initial disturbances in the fluid, roughness, and so on.

If the duct wall is at a temperature different from that of the fluid, heat will be transferred and a temperature profile will develop in the fluid. At a sufficient distance from the beginning of heating or cooling, the temperature profile becomes fully developed and therefore the heat transfer coefficient is constant. The rate of heat transfer is always greater in turbulent flow.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here