Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Ideal gas: Ilexan, heat transfer medium, Illingworth, A, Imbedded fins, Immersed bodies: Immersed tubes, in fluidized beds, heat transfer to, Immiscible liquids, condensation of vapors producing Impairment of heat transfer in combined free and forced convection in a vertical pipe, Imperfectly diffuse surfaces: Impingement damage in heat exchangers, Impingement plate: Impingement protection, in shell-and-tube heat exchangers, Impinging jets: Implicit equations, solution of Inclined enclosures, free convective heat transfer in, Inclined flow, effect of on heat transfer to cylinders, Inclined pipes: Inclined surfaces, free convective heat transfer from, Inconel, spectral characteristics of reflectance from oxidized surface of, Induced flow instabilities, in augmentation of heat transfer, Injection: Inlet effects in shell-and-tube heat exchangers, In-line tube banks: Inorganic compounds, solutions of, as heat transfer media, Inorganic substances: Instability, parallel channel, in condensers, Insulators, thermal conductivity of, Integral condensation: Integral finned tubes: Interaction coefficients in heat exchangers, Interaction parameters for binary systems, tables, Interfacial friction, in three-phase (liquid-liquid-gas) stratified flows, Interfacial resistance, in condensation, Interfacial roughness, relationships for, in annular gas-liquid flow, Interfacial shear stress, effect on filmwise condensation, on vertical surface, Intergrannular corrosion, of Intermating troughs, as corrugation design in plate heat exchangers, Intermittent flows: Internal heat sources, temperature distribution in bodies with, Internal heat transfer coefficient, use in transient conduction calculations, Internal reboilers (in distillation columns), characteristics advantages and disadvantages of, Internally finned tubes: International codes for pressure vessels, Interpenetrating continua (as representation of heat exchangers): Intertube velocity, in tube banks, Inviscid flow, compressible, with heat addition, Iodine: Iodobenzene: Iodoethane: Iodomethane: ISO codes for mechanical design of heat exchangers, Isobutane: Isobutanol: Isobutylamine: Isobutylformate: Isobutyric acid: Isoparaffins: Isopentane: Isopentanol: Isopropanol: Isopropylacetate: Isopropylamine: Isopropylbenzene: Isopropylcyclohexane: Isothermal flow, compressible, in ducts, Isothermal gas, radiation heat transfer to walls from, Isotropic materials, elastic properties, Isotropic scattering, Italy, guide to national practice for heat exchanger mechanical design,

Index

HEDH
A B C D E F G H I
Ideal gas: Ilexan, heat transfer medium, Illingworth, A, Imbedded fins, Immersed bodies: Immersed tubes, in fluidized beds, heat transfer to, Immiscible liquids, condensation of vapors producing Impairment of heat transfer in combined free and forced convection in a vertical pipe, Imperfectly diffuse surfaces: Impingement damage in heat exchangers, Impingement plate: Impingement protection, in shell-and-tube heat exchangers, Impinging jets: Implicit equations, solution of Inclined enclosures, free convective heat transfer in, Inclined flow, effect of on heat transfer to cylinders, Inclined pipes: Inclined surfaces, free convective heat transfer from, Inconel, spectral characteristics of reflectance from oxidized surface of, Induced flow instabilities, in augmentation of heat transfer, Injection: Inlet effects in shell-and-tube heat exchangers, In-line tube banks: Inorganic compounds, solutions of, as heat transfer media, Inorganic substances: Instability, parallel channel, in condensers, Insulators, thermal conductivity of, Integral condensation: Integral finned tubes: Interaction coefficients in heat exchangers, Interaction parameters for binary systems, tables, Interfacial friction, in three-phase (liquid-liquid-gas) stratified flows, Interfacial resistance, in condensation, Interfacial roughness, relationships for, in annular gas-liquid flow, Interfacial shear stress, effect on filmwise condensation, on vertical surface, Intergrannular corrosion, of Intermating troughs, as corrugation design in plate heat exchangers, Intermittent flows: Internal heat sources, temperature distribution in bodies with, Internal heat transfer coefficient, use in transient conduction calculations, Internal reboilers (in distillation columns), characteristics advantages and disadvantages of, Internally finned tubes: International codes for pressure vessels, Interpenetrating continua (as representation of heat exchangers): Intertube velocity, in tube banks, Inviscid flow, compressible, with heat addition, Iodine: Iodobenzene: Iodoethane: Iodomethane: ISO codes for mechanical design of heat exchangers, Isobutane: Isobutanol: Isobutylamine: Isobutylformate: Isobutyric acid: Isoparaffins: Isopentane: Isopentanol: Isopropanol: Isopropylacetate: Isopropylamine: Isopropylbenzene: Isopropylcyclohexane: Isothermal flow, compressible, in ducts, Isothermal gas, radiation heat transfer to walls from, Isotropic materials, elastic properties, Isotropic scattering, Italy, guide to national practice for heat exchanger mechanical design,
J K L M N O P Q R S T U V W X Y Z

Banks of Plain and Finned Tubes

DOI 10.1615/hedhme.a.000170

2.5.3 Banks of Plain and Finned Tubes

Banks of plain and finned tubes are one of the most important arrangements for heat transfer. In what follows, Section A deals with plain tubes and Section B introduces general features of finned tubes. Sections C and D then deal with prediction methods for high fin and low fin tubes respectively.

A. Banks of plain tubes

(a) Introduction

In the field of power generation, in the chemical industries, and in other technologies, heat exchangers involving tubes in crossflow are widely employed. A bundle of circular tubes is one of the most common heat transfer surfaces, particularly in shell – and tube heat exchangers.

Detailed studies have established the relation between the heat transfer and the arrangement of tubes within the bundle (staggered or in-line), and have also established the effect of relative transverse (a = s1 /d), longitudinal (b = s2 /d) and diagonal (b1 = s' /d) pitches (as defined in Figure 1). The fluid approaches the bundle at an angle ψ to the axis of the tube, the "yaw angle". The most common case is where the fluid approaches in a direction normal to the tube axes (ψ = 90°), but often tubes operate at different yaw angles ψ to the flow, and this affects the heat transfer behaviour. Inside a bundle, the flow converges in the intertube spaces and forms a highly turbulent flow over the inner tubes. The recirculation region in the rear of an inner tube is smaller than that for a single tube. The situation is governed by the relative pitches and the bundle geometry. The more compact a bundle is, the larger is the deviation in heat transfer from the single-tube situation. The average heat transfer coefficient depends on the number of longitudinal rows because changes in the turbulence level in inner rows and because of the inlet-outlet effects.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here