Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Taborek, J, xlv-lvi Taitel and Dukler flow regime map, for horizontal and inclined gas- liquid flows, Tamura et al correlation, for surface tension of mixtures, Taylor Forge method, for mechanical design of flanges, comparison with EN13445 method, Taylor series expansion, Teflon, use in heat transfer enhancement: TEMA (Tubular Exchanger Manufacturers Association): Temperature distribution: Tenders for heat exchangers, Terminal free fall velocity, in fluidization, Testing and inspection of heat exchangers: Tetrabromomethane: 1,1,2,2-Tetrachloroethane: Tetrachloroethylene: Tetradecane: Tetradecene: Tetrachlorodifluoroethane (Refrigerant 112): 1,1,1,2-Tetrafluoroethane (Refrigerant R134a): Tetrafluoromethane (Refrigerant 14): Tetrahydrofuran: 1,2,3,4-Tetramethylbenzene: 1,2,3,5-Tetramethylbenzene: 1,2,4,5-Tetramethylbenzene: Thermal conductivity: Thermal contact conductance (TCC), Thermal contact resistance (TCR), Thermal design, constructional features affecting, in shell-and-tube heat exchangers Thermal diffusivity: Thermal expansion coefficient: Thermal leakage in F-type shell-and-tube heat exchangers, Thermal mixing in plate heat exchangers, Thermal stress: Thermocal, heat transfer media, Thermodynamic cycles in refrigeration, Thermodynamic properties: Thermodynamic surface in radiative heat transfer, Thermoexel surface, for enhancement of boiling, Thermofluids, heat transfer medium, Thermosiphon Theta-NTU method: Thickness of boundary layers (displacement, momentum, energy, density, temperature), Thin-wall-type expansion bellows, Thiophene: Thome, J R Three-phase flows: Tie rods in shell-and-tube heat exchangers, Tinker method for shell-side heat transfer in shell-and-tube heat exchangers, Titanium and titanium alloys, T-junctions, loss coefficients in, Tolerances Toluene: m-Toluidine: Tong F-factor method, for critical heat flux with nonuniform heating, Tooth, A S, Total emissivity in gases, Transcendental equations in transient conduction, Transient behavior: Transition boiling: Transition flow, heat transfer in free convective flow over vertical surfaces in, Transitional flow, in combined free and forced convection, Transmission of thermal radiation in solids: Transmissivity of solids: Transport properties: Transverse flow, combined free and forced convection in, Treated surfaces, for augmentation of heat transfer, Triangular duct: Triangular fins, in plate fin exchangers, Triangular relationship, in annular gas-liquid flow, Tribromomethane: 1,1,1-Trichloroethane (Refrigerant 140a): Trichloroethylene: Trichlorofluoromethane (Refrigerant 11) Trichloromethane (Chloroform) (Refrigerant 20): 1,1,2-Trichlorotrifluoroethane (Refrigerant 113): Tridecane: Tridecene: Triethylamine: 1,1,1-Trifluoroethane (Refrigerant 143a): Trifluoromethane (Refrigerant 23): Trimethylamine: 1,2,3-Trimethylbenzene: 1,2,4-Trimethylbenzene: 1,3,5-Trimethylbenzene: 2,2,4-Trimethylpentane (Isooctane): Triphenylmethane: Triple interface (gas/solid/liquid), True temperature difference, in double pipe exchangers, Truelove, J S, Tsotsas, E Tube-baffle damage, in heat exchangers, Tube banks, finned: Tube banks, plain: Tube banks, roughened tubes, effect of roughness on Euler number in, Tube bundles: Tube counts, in shell-and-tube heat exchangers: Tube end attachment, in shell-and-tube heat exchangers, Tube inserts, heat exchangers with, Tube-in-plate extended surface configurations, fin efficiency of, Tube plates, in shell-and-tube heat exchangers: Tube rupture in shell-and-tube heat exchangers, Tube-to-tubesheet attachment, in shell-and-tube heat exchangers, Tubes: Tucker, R J, Tunnel dryer, Turbine exhaust condensers: Turbines, lost work in Turbulence: Turbulent boundary layers: Turbulent buffeting, as source of tube vibration, Turbulent energy, integral equation for, Turbulent flow: Turnarounds, in heat exchangers, Turner, C W, Twisted tapes: Twisted tube heat exchangers, Twisted tubes Two-equation models, for turbulent boundary layers, Two-phase loop with capillary pump, Two-phase flows:

Index

HEDH
A B C D E F G H I J K L M N O P Q R S T
Taborek, J, xlv-lvi Taitel and Dukler flow regime map, for horizontal and inclined gas- liquid flows, Tamura et al correlation, for surface tension of mixtures, Taylor Forge method, for mechanical design of flanges, comparison with EN13445 method, Taylor series expansion, Teflon, use in heat transfer enhancement: TEMA (Tubular Exchanger Manufacturers Association): Temperature distribution: Tenders for heat exchangers, Terminal free fall velocity, in fluidization, Testing and inspection of heat exchangers: Tetrabromomethane: 1,1,2,2-Tetrachloroethane: Tetrachloroethylene: Tetradecane: Tetradecene: Tetrachlorodifluoroethane (Refrigerant 112): 1,1,1,2-Tetrafluoroethane (Refrigerant R134a): Tetrafluoromethane (Refrigerant 14): Tetrahydrofuran: 1,2,3,4-Tetramethylbenzene: 1,2,3,5-Tetramethylbenzene: 1,2,4,5-Tetramethylbenzene: Thermal conductivity: Thermal contact conductance (TCC), Thermal contact resistance (TCR), Thermal design, constructional features affecting, in shell-and-tube heat exchangers Thermal diffusivity: Thermal expansion coefficient: Thermal leakage in F-type shell-and-tube heat exchangers, Thermal mixing in plate heat exchangers, Thermal stress: Thermocal, heat transfer media, Thermodynamic cycles in refrigeration, Thermodynamic properties: Thermodynamic surface in radiative heat transfer, Thermoexel surface, for enhancement of boiling, Thermofluids, heat transfer medium, Thermosiphon Theta-NTU method: Thickness of boundary layers (displacement, momentum, energy, density, temperature), Thin-wall-type expansion bellows, Thiophene: Thome, J R Three-phase flows: Tie rods in shell-and-tube heat exchangers, Tinker method for shell-side heat transfer in shell-and-tube heat exchangers, Titanium and titanium alloys, T-junctions, loss coefficients in, Tolerances Toluene: m-Toluidine: Tong F-factor method, for critical heat flux with nonuniform heating, Tooth, A S, Total emissivity in gases, Transcendental equations in transient conduction, Transient behavior: Transition boiling: Transition flow, heat transfer in free convective flow over vertical surfaces in, Transitional flow, in combined free and forced convection, Transmission of thermal radiation in solids: Transmissivity of solids: Transport properties: Transverse flow, combined free and forced convection in, Treated surfaces, for augmentation of heat transfer, Triangular duct: Triangular fins, in plate fin exchangers, Triangular relationship, in annular gas-liquid flow, Tribromomethane: 1,1,1-Trichloroethane (Refrigerant 140a): Trichloroethylene: Trichlorofluoromethane (Refrigerant 11) Trichloromethane (Chloroform) (Refrigerant 20): 1,1,2-Trichlorotrifluoroethane (Refrigerant 113): Tridecane: Tridecene: Triethylamine: 1,1,1-Trifluoroethane (Refrigerant 143a): Trifluoromethane (Refrigerant 23): Trimethylamine: 1,2,3-Trimethylbenzene: 1,2,4-Trimethylbenzene: 1,3,5-Trimethylbenzene: 2,2,4-Trimethylpentane (Isooctane): Triphenylmethane: Triple interface (gas/solid/liquid), True temperature difference, in double pipe exchangers, Truelove, J S, Tsotsas, E Tube-baffle damage, in heat exchangers, Tube banks, finned: Tube banks, plain: Tube banks, roughened tubes, effect of roughness on Euler number in, Tube bundles: Tube counts, in shell-and-tube heat exchangers: Tube end attachment, in shell-and-tube heat exchangers, Tube inserts, heat exchangers with, Tube-in-plate extended surface configurations, fin efficiency of, Tube plates, in shell-and-tube heat exchangers: Tube rupture in shell-and-tube heat exchangers, Tube-to-tubesheet attachment, in shell-and-tube heat exchangers, Tubes: Tucker, R J, Tunnel dryer, Turbine exhaust condensers: Turbines, lost work in Turbulence: Turbulent boundary layers: Turbulent buffeting, as source of tube vibration, Turbulent energy, integral equation for, Turbulent flow: Turnarounds, in heat exchangers, Turner, C W, Twisted tapes: Twisted tube heat exchangers, Twisted tubes Two-equation models, for turbulent boundary layers, Two-phase loop with capillary pump, Two-phase flows:
U V W X Y Z

Combined Free and Forced Convection Around Immersed Bodies

DOI 10.1615/hedhme.a.000176

2.5.9 Combined free and forced convection around immersed bodies

Heat transfer by forced convection between a fluid and an immersed body implies a temperature difference and hence a density difference. The density difference gives rise to free convection. The effect of buoyant motion in the direction of the forced flow is to increase the velocity in the boundary layer and thereby the rate of heat transfer over that for pure forced convection. Buoyant motion in opposition to the forced motion reduces the velocity and the rate of heat transfer relative to pure forced or free convection. Also, assisting flows retard and opposing flows advance the point of separation of the boundary layer on immersed bodies. Hall and Price (1970) found that the rate of heat transfer in a turbulent free convection was at first decreased and then increased by a superimposed forced flow in the same direction. They attributed the decrease to the suppression of turbulence. In view of these complexities, it is apparent that the suggestion of McAdams (1954), that the higher of the rates of heat transfer for the two pure processes be used for the combined process, can be considered only as a first-order approximation. More accurate correlating equations for various regimes are recommended below.

A. Assisting convection

(a) Thin laminar boundary-layer regime

Extensive theoretical and experimental results have been obtained for aiding free and forced convection in the laminar boundary-layer regime, and many expressions have been proposed for their correlation, generally in the form

\[\label{eq1} \mbox{Nu}^{n}=\mbox{Nu}^{n}_{F}+\mbox{Nu}^{n}_{N}\tag{1}\]

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here