Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Saddle supports, for heat exchangers, Safety factors, Safety, of heat exchangers: Salicyl aldehyde: Salts, heat transfer, as heat transfer media, Sand roughness, equivalent, Santotherm, heat transfer media, Sastri and Rao correlation for surface tension, Saturated boiling: Saturated density: Saturated fluids, tables of physical properties, Saturation pressure, Saturation temperature, Saunders, E A D Sauer, H J Jr, Scale formation in heat exchangers, Scaling approximations, in nonisothermal gas radiation, Scattering bed models, for radiative heat transfer from surfaces, Scattering, interaction phenomena with, Scattering coefficient, Schack wide-band model, for gas radiation properties, Schick and Prausnitz method, for critical volume of mixtures, Schlunder, E U Schmidt, F W Schmidt correlation, for heat transfer in in-line banks of high fin tubes, Schmidt number, Schneider, G E, Schrock and Grossman correlations, for forced convective heat transfer in two-phase flow, Schunk, M Schwier, K, Scraped surfaces: Scaling devices, in shell-and-tube heat exchangers, Seawater physical properties, Seider-Tate equation, for heat transfer in heat exchangers, Selection of heat transfer equipment: Semiconductors, thermal conductivity, Separated flow model: Separation, exergy analysis for, Separators, for use in association with evaporators, Series solutions, for one-dimensional transient conduction, Serrated fins, in plate fin heat exchangers, Shah correlation for boiling, Shah correlation, for boiling in horizontal tubes, Shape factor, in radiative heat transfer between diffuse surfaces, Shear flow, of non-Newtonian fluids, Shear free flow, of non-Newtonian fluids, Shear rate, in fluid, Shear stress: Sheffield, J W, Shelf dryer, Shell-and-tube heat exchanger: Shell-to-baffle clearance, in shell-and-tube heat exchangers, Shells, for shell-and-tube heat exchangers: Sherwood number Shipes, K V, Short-tube vertical evaporator, Sigma phase embrittlement, of stainless steels, Silicate scales, in heat exchangers, Silicone oils, as heat transfer media, physical properties of, Silver method, for calculation of multicomponent condensation, Similarity theory, Simonis, V, Single-phase fluid flow: Single stage flash evaporation (SSF): Singularities, two-phase gas-liquid pressure drop across, Sink, in radiation: Skid-mounted units, specification of, Skin friction coefficient, Skrinska, A, Slab: Sleeves, internal, for expansion bellows, Slot: Slug flow: Slugging, in fluidized beds, Smith, A A, Smith, R, Smith, R A Smith, O, Snell's law, in radiation, Software, for code design, Solar absorber, Solar reflector, Soldered fins, in double pipe exchangers, Solid fuels, properties of, Solids circulation, in fluidized beds, Solid-gas flow: Solid-liquid flow: Solidification: Solids: Solids circulation, in fluidized beds, Soot blowing, Sound velocity: Source, in radiation: Spacers, in shell-and-tube heat exchangers, Spalding, D B, Sparging: Specific enthalpy, Specific entropy: Specific heat capacity, Specific internal energy, Specific volume: Specification of heat exchangers, Spectral absorptivity: Spectral emissivity, in gases, Specular surface, Specular-walled passages, radiative heat transfer in, Spheres: Spherical coordinates, for finite difference equations for conduction, Spherical shells: Spheroids (oblate and prolate), free convective heat transfer from, Spine fins: Spiral heat exchanger: Spirally fluted tubes: Sponge rubber balls, in fouling mitigation, Spray dryers, Sprays, in heat exchangers, Square ducts: Stable equilibrium, of vapor and liquid, Staggered tube banks: Stainless steels, Stanton number Startup: State diagram, for fluidized beds, Static mixers, in heat exchangers, Statically stable foams, Steam, dropwise condensation of, Steam tables, Steam turbine exhaust condensers, Steels, as material of construction, Stefan-Boltzmann constant, Stefan's law, for blackbody radiation, Stegmaier, W, Steiner and Taborek correlation, for forced convective boiling, Stephan and Korner correlation, for boiling of binary mixtures, Stiffeners, PD5500 code guidelines for, Stiffeners, against external pressure, EN13445 guidance on, Stirred beds, heat transfer to, Stirred reactor model, for furnaces, Stone's strongly implicit method, Straight fins (longitudinal fins): Stratified gas-liquid flow: Stratified liquid-liquid-gas flow: Steam analysis methods, for shell-side heat transfer and pressure drop in shell-and-tube heat exchangers, Stress, compressive, in heat exchanger tubes, Stress corrosion cracking, of stainless steels, Stress equation models, for turbulent boundary layers, Stress-strain curve, for solids, Stress tensor: Stresses: Strip baffles, in tube bundles with longitudinal flow, Strouhal number, Subchannel analysis, for critical heat flux in rod bundles, Subcooled boiling: Subcooling: Sublayer, viscous, Submerged combustion, Successive over-under relaxation method for solution of implicit equations, Suction: Suction line exchangers in refrigeration, Sulfur: Sulfur compounds (organic): Sulfur dioxide: Sulfur hexafluoride: Sulfur trioxide: Supercritical fluids: Superficial velocity, in multiphase flow, Superheated gases: Superheated liquid, in metastable state, Superheated vapor, condensation of, on vertical surface, Supersaturation, as cause of fogging in condensers: Suppression of nucleate boiling, Surface catalysis, in augmentation of heat transfer, Surface condensers, Surface finish: Surface, hydraulically smooth, Surface material, effect on fouling, Surface models, in radiative heat transfer, Surface modification for drag reduction, Surface temperature, effect on fouling, Surface tension: Surfactants, in drag reduction, Suspension, radiation interaction phenomena in, Sutherland formula, for viscosity variation with temperature, Sutterby fluid (non-Newtonian), free convective heat transfer to, Swirling flow, in augmentation of heat transfer, Synthetic heat transfer media, Synthetic mixture heat transfer media,

Index

HEDH
A B C D E F G H I J K L M N O P Q R S
Saddle supports, for heat exchangers, Safety factors, Safety, of heat exchangers: Salicyl aldehyde: Salts, heat transfer, as heat transfer media, Sand roughness, equivalent, Santotherm, heat transfer media, Sastri and Rao correlation for surface tension, Saturated boiling: Saturated density: Saturated fluids, tables of physical properties, Saturation pressure, Saturation temperature, Saunders, E A D Sauer, H J Jr, Scale formation in heat exchangers, Scaling approximations, in nonisothermal gas radiation, Scattering bed models, for radiative heat transfer from surfaces, Scattering, interaction phenomena with, Scattering coefficient, Schack wide-band model, for gas radiation properties, Schick and Prausnitz method, for critical volume of mixtures, Schlunder, E U Schmidt, F W Schmidt correlation, for heat transfer in in-line banks of high fin tubes, Schmidt number, Schneider, G E, Schrock and Grossman correlations, for forced convective heat transfer in two-phase flow, Schunk, M Schwier, K, Scraped surfaces: Scaling devices, in shell-and-tube heat exchangers, Seawater physical properties, Seider-Tate equation, for heat transfer in heat exchangers, Selection of heat transfer equipment: Semiconductors, thermal conductivity, Separated flow model: Separation, exergy analysis for, Separators, for use in association with evaporators, Series solutions, for one-dimensional transient conduction, Serrated fins, in plate fin heat exchangers, Shah correlation for boiling, Shah correlation, for boiling in horizontal tubes, Shape factor, in radiative heat transfer between diffuse surfaces, Shear flow, of non-Newtonian fluids, Shear free flow, of non-Newtonian fluids, Shear rate, in fluid, Shear stress: Sheffield, J W, Shelf dryer, Shell-and-tube heat exchanger: Shell-to-baffle clearance, in shell-and-tube heat exchangers, Shells, for shell-and-tube heat exchangers: Sherwood number Shipes, K V, Short-tube vertical evaporator, Sigma phase embrittlement, of stainless steels, Silicate scales, in heat exchangers, Silicone oils, as heat transfer media, physical properties of, Silver method, for calculation of multicomponent condensation, Similarity theory, Simonis, V, Single-phase fluid flow: Single stage flash evaporation (SSF): Singularities, two-phase gas-liquid pressure drop across, Sink, in radiation: Skid-mounted units, specification of, Skin friction coefficient, Skrinska, A, Slab: Sleeves, internal, for expansion bellows, Slot: Slug flow: Slugging, in fluidized beds, Smith, A A, Smith, R, Smith, R A Smith, O, Snell's law, in radiation, Software, for code design, Solar absorber, Solar reflector, Soldered fins, in double pipe exchangers, Solid fuels, properties of, Solids circulation, in fluidized beds, Solid-gas flow: Solid-liquid flow: Solidification: Solids: Solids circulation, in fluidized beds, Soot blowing, Sound velocity: Source, in radiation: Spacers, in shell-and-tube heat exchangers, Spalding, D B, Sparging: Specific enthalpy, Specific entropy: Specific heat capacity, Specific internal energy, Specific volume: Specification of heat exchangers, Spectral absorptivity: Spectral emissivity, in gases, Specular surface, Specular-walled passages, radiative heat transfer in, Spheres: Spherical coordinates, for finite difference equations for conduction, Spherical shells: Spheroids (oblate and prolate), free convective heat transfer from, Spine fins: Spiral heat exchanger: Spirally fluted tubes: Sponge rubber balls, in fouling mitigation, Spray dryers, Sprays, in heat exchangers, Square ducts: Stable equilibrium, of vapor and liquid, Staggered tube banks: Stainless steels, Stanton number Startup: State diagram, for fluidized beds, Static mixers, in heat exchangers, Statically stable foams, Steam, dropwise condensation of, Steam tables, Steam turbine exhaust condensers, Steels, as material of construction, Stefan-Boltzmann constant, Stefan's law, for blackbody radiation, Stegmaier, W, Steiner and Taborek correlation, for forced convective boiling, Stephan and Korner correlation, for boiling of binary mixtures, Stiffeners, PD5500 code guidelines for, Stiffeners, against external pressure, EN13445 guidance on, Stirred beds, heat transfer to, Stirred reactor model, for furnaces, Stone's strongly implicit method, Straight fins (longitudinal fins): Stratified gas-liquid flow: Stratified liquid-liquid-gas flow: Steam analysis methods, for shell-side heat transfer and pressure drop in shell-and-tube heat exchangers, Stress, compressive, in heat exchanger tubes, Stress corrosion cracking, of stainless steels, Stress equation models, for turbulent boundary layers, Stress-strain curve, for solids, Stress tensor: Stresses: Strip baffles, in tube bundles with longitudinal flow, Strouhal number, Subchannel analysis, for critical heat flux in rod bundles, Subcooled boiling: Subcooling: Sublayer, viscous, Submerged combustion, Successive over-under relaxation method for solution of implicit equations, Suction: Suction line exchangers in refrigeration, Sulfur: Sulfur compounds (organic): Sulfur dioxide: Sulfur hexafluoride: Sulfur trioxide: Supercritical fluids: Superficial velocity, in multiphase flow, Superheated gases: Superheated liquid, in metastable state, Superheated vapor, condensation of, on vertical surface, Supersaturation, as cause of fogging in condensers: Suppression of nucleate boiling, Surface catalysis, in augmentation of heat transfer, Surface condensers, Surface finish: Surface, hydraulically smooth, Surface material, effect on fouling, Surface models, in radiative heat transfer, Surface modification for drag reduction, Surface temperature, effect on fouling, Surface tension: Surfactants, in drag reduction, Suspension, radiation interaction phenomena in, Sutherland formula, for viscosity variation with temperature, Sutterby fluid (non-Newtonian), free convective heat transfer to, Swirling flow, in augmentation of heat transfer, Synthetic heat transfer media, Synthetic mixture heat transfer media,
T U V W X Y Z

Combined Free and Forced Convection Around Immersed Bodies

DOI 10.1615/hedhme.a.000176

2.5.9 Combined free and forced convection around immersed bodies

Heat transfer by forced convection between a fluid and an immersed body implies a temperature difference and hence a density difference. The density difference gives rise to free convection. The effect of buoyant motion in the direction of the forced flow is to increase the velocity in the boundary layer and thereby the rate of heat transfer over that for pure forced convection. Buoyant motion in opposition to the forced motion reduces the velocity and the rate of heat transfer relative to pure forced or free convection. Also, assisting flows retard and opposing flows advance the point of separation of the boundary layer on immersed bodies. Hall and Price (1970) found that the rate of heat transfer in a turbulent free convection was at first decreased and then increased by a superimposed forced flow in the same direction. They attributed the decrease to the suppression of turbulence. In view of these complexities, it is apparent that the suggestion of McAdams (1954), that the higher of the rates of heat transfer for the two pure processes be used for the combined process, can be considered only as a first-order approximation. More accurate correlating equations for various regimes are recommended below.

A. Assisting convection

(a) Thin laminar boundary-layer regime

Extensive theoretical and experimental results have been obtained for aiding free and forced convection in the laminar boundary-layer regime, and many expressions have been proposed for their correlation, generally in the form

\[\label{eq1} \mbox{Nu}^{n}=\mbox{Nu}^{n}_{F}+\mbox{Nu}^{n}_{N}\tag{1}\]

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here