Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:

Index

HEDH
A B C D E F G H I J K L M N
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:
O P Q R S T U V W X Y Z

Augmentation of Heat Transfer

DOI 10.1615/hedhme.a.000178

2.5.11 Augmentation of heat transfer

A. Introduction

This Section considers techniques for augmenting single-phase heat transfer in heat exchangers and miscellaneous heat transfer equipment. The previous version of this section was issued as part of the first Edition of HEDH in 1983. Though much of the theoretical basis of the topic remains unchanged since the previous version, there have been extensive further studies of heat transfer enhancement reflecting the growth of interest in two areas which rely essentially upon enhancement methods. These are process intensification and microfluidics. Some aspects of both of these are considered below, as they might be applied to heat exchanger enhancement. Another difference compared to earlier documentation of enhancement is the introduction of nano-particles into fluids — and some claim that this enhances convective heat transfer in liquid flows.

The scope covers single phase heat transfer in gases and liquids. It also includes one aspect that some may consider broaches the boundary with two-phase heat transfer, but is one in which it is believed that enhancement in both phases occurs and is critical to successful plant operation — namely enhancement of heat transfer in solid-liquid phase-change media. If we a generous in our definitions, it might be included in the same category as a fluidised bed, which was considered in earlier Editions.

Heat transfer augmentation, synonymous with "enhancement" (which will be the term principally used here) and "intensification" — now, when linked with processes, becoming a major player in the search for more acceptable industrial unit operations, means an increase in the heat transfer coefficient. There are many ways of doing this, covering both single- and two-phase heat transfer and impinging in many instances on mass transfer — most of course involve moving mass, if not changing the phase of the mass! The main types of enhancement are briefly described below.

B. Classification of enhancement techniques

. . .

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here