Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Cabin heater, Caetano, EF Calcium carbonate, fouling of heat exchangers by, Calcium sulphate, fouling of heat exchangers by, CALFLO, heat transfer media, Calorically perfect gas, CANDU Reactor, fouling problems in, Carbon dioxide: Carbon disulfide: Carbon monoxide: Carbon steel: Carbon-manganese steels Carbon-molybdenum steels, Carbon tetrachloride: Carbonyl sulfide: Carboxylic acids: Carnot cycle in refrigeration, Carnot factor, Carreau fluid (non-Newtonian), Carryover of solids in fluidized beds, Cashman, B L, Cast iron, thermal and mechanical properties, Cavitation as source of damage in heat exchangers, Cell method, for heat exchanger effectiveness, Cement kilns, CEN code for pressure vessels, Centrifugal dryer, Ceramics Certification of heat exchangers, Chan, S H, Channel emissivity, Chapman-Rubescin formula for viscosity variation with temperature, Chemical exergy, Chemical formulas of commonly used fluids Chemical industry, fouling of heat exchangers in, Chemical reactions, exergy analysis of, Chemical reaction fouling, Chen correlation for forced convective boiling, Chen method, for enthalpy of vaporisation, Chenoweth, J M, Chevron troughs as corrugation design in plate heat exchangers, Chillers, construction features of, Chilton-Colburn analogy, Chisholm, D Chisholm correlations: Chlorine: Chloroacetic acid: Chlorobenzene: Chlorobutane: Chlorodifluoromethane (see Refrigerant 22) 1-Chloro-1,1-difluoroethane (Refrigerant 142b): Chloroethane (Refrigerant 160): Chloromethane (Refrigerant 40): Chloropentane: 1,2-Chloropentafluoroethane (Refrigerant 115): Chloroprene (2-Chloro-1,3-butadiene): 1-Chloropropane: 2-Chloropropane: m-Chlorotoluene: o-Chlorotoluene: Chlorotrifluoroethylene: Chlorotrifluoromethane (see Refrigerant 13) Chromium-molybdenum steels, Chudnovsky, Y, Chugging flow (gas-liquid), in shell-and-tube heat exchangers, Chung et al method, for viscosity of low pressure gases, Church and Prausnitz methods: Churchill, S W, Churchill and Chu correlations for free convective heat transfer: Churn flow, regions of occurrence of, Circles, radiative heat transfer shape factors between parallel coaxial, Circular girth flanges, design according to ASME VIII code, Circulating fluidized beds, Circulation, modes of in free convection: in enclosures heated from below, CISE correlations for void fractions, Clausius-Clapeyron relationship: Cleaning: Climbing film evaporator, Closed circuit cooling towers, Coalescence of bubbles in fluidized beds, Coatings for corrosion protection Cocurrent flow: Codes, mechanical design: Cogeneration Colburn and Drew method for binary vapor condensation, Colburn and Hougen method for condensation in presence of noncondensable gases Colburn equation for single-phase heat transfer outside tube banks, Colburn j factor: Colebrook-White equation for friction factor in rough circular pipe, Coles, law of the wake, Collier, J G, Combined free and forced convection heat transfer: Combined heat and mass transfer, Combining flow, loss coefficients in, Combustion model for furnaces, Compact heat exchangers (see Plate fin heat exchangers) Compartment dryers, Composite curves, in the pinch analysis method for heat exchanger network analysis: Compressed liquids, density of: Compressible flow: Compression, exergy analysis of Compressive stress, in heat exchanger tubes, Computer-aided design, of evaporators, Computer program for Monte Carlo calculations of radiative heat transfer, Computer simulation, of fouling, Computer software for mechanical design, Concentration, choice of evaporator type for, Concentric spheres, free convective heat transfer in, Concurrency corrections in plate heat exchangers, Condensation: Concrete, lightweight, submerged combustion system for, Condensation curves: Condenser/preheater tubes, in multistage flash evaporation, Condensers: Conduction, heat: Conductors, thermal conductivity of, Cones, under internal pressure, EN13445 guidelines for, Cones, vertical: Conical shells, mechanical design of: Conjugate radiation interactions Connors equation for fluid elastic instability, Conservation equations: Constantinon and Gani method, for estimating normal boiling point, Contact angle, Contact resistance: Continuity equation: Continuum model, for fluids, Continuum theories, for non-Newtonian fluids, Contraction, sudden, pressure drop in: Control: Control volume method, in finite difference solutions for conduction, Convection, interaction of radiation with, Convection effects, on heat transfer in kettle reboilers, Convective heat transfer, single-phase: Conversion factors: Conveyor, gravity: Cooling curves, in condensation, Cooling towers: Cooling water fouling, Cooper correlation, for nucleate boiling, Cooper, Anthony, Copper, thermal and mechanical properties, Copper alloys, Correlation, general nature of, Corresponding states principle Corrosion: Corrugation design, for plate heat exchangers Costing of heat exchangers: Countercurrent flow: Coupled thermal fields, in transient conduction, Cowie, R C, Crank-Nicolson differencing scheme, in finite difference method, Creeping flow, in combined free and forced convection around immersed bodies, m-Cresol: o-Cresol: p-Cresol: Crevice corrosion, in stainless steels, Critical constants Critical density, of commonly used fluids, Critical flow, in gas-liquid systems, Critical heat flux: Critical pressure: Critical Rayleigh number, in free convection, Critical temperature: Critical velocity, in stratification in bends and horizontal tubes, Critical volume (see also Critical density) Cross counterflow heat exchangers, Crossflow: Crude oil, fouling of heat exchangers: Cryogenic plant, entropy generation in, Crystallization Crystallization fouling, Curved ducts: Cut-and-twist factor, in enhancement of heat transfer in double pipe heat exchangers, C-value method for heat exchanger costing, Cycling, of expansion bellows, Cyclobutane: Cyclohexane: Cyclohexanol: Cyclohexene: Cyclopentane: Cyclopentene: Cyclopropane: Cylinders: Cylindrical contacts, thermal contact resistance in, Cylindrical coordinates, finite difference equations for conduction in, Cylindrical shell, analytical basis of code rules for,

Index

HEDH
A B C
Cabin heater, Caetano, EF Calcium carbonate, fouling of heat exchangers by, Calcium sulphate, fouling of heat exchangers by, CALFLO, heat transfer media, Calorically perfect gas, CANDU Reactor, fouling problems in, Carbon dioxide: Carbon disulfide: Carbon monoxide: Carbon steel: Carbon-manganese steels Carbon-molybdenum steels, Carbon tetrachloride: Carbonyl sulfide: Carboxylic acids: Carnot cycle in refrigeration, Carnot factor, Carreau fluid (non-Newtonian), Carryover of solids in fluidized beds, Cashman, B L, Cast iron, thermal and mechanical properties, Cavitation as source of damage in heat exchangers, Cell method, for heat exchanger effectiveness, Cement kilns, CEN code for pressure vessels, Centrifugal dryer, Ceramics Certification of heat exchangers, Chan, S H, Channel emissivity, Chapman-Rubescin formula for viscosity variation with temperature, Chemical exergy, Chemical formulas of commonly used fluids Chemical industry, fouling of heat exchangers in, Chemical reactions, exergy analysis of, Chemical reaction fouling, Chen correlation for forced convective boiling, Chen method, for enthalpy of vaporisation, Chenoweth, J M, Chevron troughs as corrugation design in plate heat exchangers, Chillers, construction features of, Chilton-Colburn analogy, Chisholm, D Chisholm correlations: Chlorine: Chloroacetic acid: Chlorobenzene: Chlorobutane: Chlorodifluoromethane (see Refrigerant 22) 1-Chloro-1,1-difluoroethane (Refrigerant 142b): Chloroethane (Refrigerant 160): Chloromethane (Refrigerant 40): Chloropentane: 1,2-Chloropentafluoroethane (Refrigerant 115): Chloroprene (2-Chloro-1,3-butadiene): 1-Chloropropane: 2-Chloropropane: m-Chlorotoluene: o-Chlorotoluene: Chlorotrifluoroethylene: Chlorotrifluoromethane (see Refrigerant 13) Chromium-molybdenum steels, Chudnovsky, Y, Chugging flow (gas-liquid), in shell-and-tube heat exchangers, Chung et al method, for viscosity of low pressure gases, Church and Prausnitz methods: Churchill, S W, Churchill and Chu correlations for free convective heat transfer: Churn flow, regions of occurrence of, Circles, radiative heat transfer shape factors between parallel coaxial, Circular girth flanges, design according to ASME VIII code, Circulating fluidized beds, Circulation, modes of in free convection: in enclosures heated from below, CISE correlations for void fractions, Clausius-Clapeyron relationship: Cleaning: Climbing film evaporator, Closed circuit cooling towers, Coalescence of bubbles in fluidized beds, Coatings for corrosion protection Cocurrent flow: Codes, mechanical design: Cogeneration Colburn and Drew method for binary vapor condensation, Colburn and Hougen method for condensation in presence of noncondensable gases Colburn equation for single-phase heat transfer outside tube banks, Colburn j factor: Colebrook-White equation for friction factor in rough circular pipe, Coles, law of the wake, Collier, J G, Combined free and forced convection heat transfer: Combined heat and mass transfer, Combining flow, loss coefficients in, Combustion model for furnaces, Compact heat exchangers (see Plate fin heat exchangers) Compartment dryers, Composite curves, in the pinch analysis method for heat exchanger network analysis: Compressed liquids, density of: Compressible flow: Compression, exergy analysis of Compressive stress, in heat exchanger tubes, Computer-aided design, of evaporators, Computer program for Monte Carlo calculations of radiative heat transfer, Computer simulation, of fouling, Computer software for mechanical design, Concentration, choice of evaporator type for, Concentric spheres, free convective heat transfer in, Concurrency corrections in plate heat exchangers, Condensation: Concrete, lightweight, submerged combustion system for, Condensation curves: Condenser/preheater tubes, in multistage flash evaporation, Condensers: Conduction, heat: Conductors, thermal conductivity of, Cones, under internal pressure, EN13445 guidelines for, Cones, vertical: Conical shells, mechanical design of: Conjugate radiation interactions Connors equation for fluid elastic instability, Conservation equations: Constantinon and Gani method, for estimating normal boiling point, Contact angle, Contact resistance: Continuity equation: Continuum model, for fluids, Continuum theories, for non-Newtonian fluids, Contraction, sudden, pressure drop in: Control: Control volume method, in finite difference solutions for conduction, Convection, interaction of radiation with, Convection effects, on heat transfer in kettle reboilers, Convective heat transfer, single-phase: Conversion factors: Conveyor, gravity: Cooling curves, in condensation, Cooling towers: Cooling water fouling, Cooper correlation, for nucleate boiling, Cooper, Anthony, Copper, thermal and mechanical properties, Copper alloys, Correlation, general nature of, Corresponding states principle Corrosion: Corrugation design, for plate heat exchangers Costing of heat exchangers: Countercurrent flow: Coupled thermal fields, in transient conduction, Cowie, R C, Crank-Nicolson differencing scheme, in finite difference method, Creeping flow, in combined free and forced convection around immersed bodies, m-Cresol: o-Cresol: p-Cresol: Crevice corrosion, in stainless steels, Critical constants Critical density, of commonly used fluids, Critical flow, in gas-liquid systems, Critical heat flux: Critical pressure: Critical Rayleigh number, in free convection, Critical temperature: Critical velocity, in stratification in bends and horizontal tubes, Critical volume (see also Critical density) Cross counterflow heat exchangers, Crossflow: Crude oil, fouling of heat exchangers: Cryogenic plant, entropy generation in, Crystallization Crystallization fouling, Curved ducts: Cut-and-twist factor, in enhancement of heat transfer in double pipe heat exchangers, C-value method for heat exchanger costing, Cycling, of expansion bellows, Cyclobutane: Cyclohexane: Cyclohexanol: Cyclohexene: Cyclopentane: Cyclopentene: Cyclopropane: Cylinders: Cylindrical contacts, thermal contact resistance in, Cylindrical coordinates, finite difference equations for conduction in, Cylindrical shell, analytical basis of code rules for,
D E F G H I J K L M N O P Q R S T U V W X Y Z

Augmentation of Heat Transfer

DOI 10.1615/hedhme.a.000178

2.5.11 Augmentation of heat transfer

A. Introduction

This Section considers techniques for augmenting single-phase heat transfer in heat exchangers and miscellaneous heat transfer equipment. The previous version of this section was issued as part of the first Edition of HEDH in 1983. Though much of the theoretical basis of the topic remains unchanged since the previous version, there have been extensive further studies of heat transfer enhancement reflecting the growth of interest in two areas which rely essentially upon enhancement methods. These are process intensification and microfluidics. Some aspects of both of these are considered below, as they might be applied to heat exchanger enhancement. Another difference compared to earlier documentation of enhancement is the introduction of nano-particles into fluids — and some claim that this enhances convective heat transfer in liquid flows.

The scope covers single phase heat transfer in gases and liquids. It also includes one aspect that some may consider broaches the boundary with two-phase heat transfer, but is one in which it is believed that enhancement in both phases occurs and is critical to successful plant operation — namely enhancement of heat transfer in solid-liquid phase-change media. If we a generous in our definitions, it might be included in the same category as a fluidised bed, which was considered in earlier Editions.

Heat transfer augmentation, synonymous with "enhancement" (which will be the term principally used here) and "intensification" — now, when linked with processes, becoming a major player in the search for more acceptable industrial unit operations, means an increase in the heat transfer coefficient. There are many ways of doing this, covering both single- and two-phase heat transfer and impinging in many instances on mass transfer — most of course involve moving mass, if not changing the phase of the mass! The main types of enhancement are briefly described below.

B. Classification of enhancement techniques

. . .

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here