Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Ideal gas: Ilexan, heat transfer medium, Illingworth, A, Imbedded fins, Immersed bodies: Immersed tubes, in fluidized beds, heat transfer to, Immiscible liquids, condensation of vapors producing Impairment of heat transfer in combined free and forced convection in a vertical pipe, Imperfectly diffuse surfaces: Impingement damage in heat exchangers, Impingement plate: Impingement protection, in shell-and-tube heat exchangers, Impinging jets: Implicit equations, solution of Inclined enclosures, free convective heat transfer in, Inclined flow, effect of on heat transfer to cylinders, Inclined pipes: Inclined surfaces, free convective heat transfer from, Inconel, spectral characteristics of reflectance from oxidized surface of, Induced flow instabilities, in augmentation of heat transfer, Injection: Inlet effects in shell-and-tube heat exchangers, In-line tube banks: Inorganic compounds, solutions of, as heat transfer media, Inorganic substances: Instability, parallel channel, in condensers, Insulators, thermal conductivity of, Integral condensation: Integral finned tubes: Interaction coefficients in heat exchangers, Interaction parameters for binary systems, tables, Interfacial friction, in three-phase (liquid-liquid-gas) stratified flows, Interfacial resistance, in condensation, Interfacial roughness, relationships for, in annular gas-liquid flow, Interfacial shear stress, effect on filmwise condensation, on vertical surface, Intergrannular corrosion, of Intermating troughs, as corrugation design in plate heat exchangers, Intermittent flows: Internal heat sources, temperature distribution in bodies with, Internal heat transfer coefficient, use in transient conduction calculations, Internal reboilers (in distillation columns), characteristics advantages and disadvantages of, Internally finned tubes: International codes for pressure vessels, Interpenetrating continua (as representation of heat exchangers): Intertube velocity, in tube banks, Inviscid flow, compressible, with heat addition, Iodine: Iodobenzene: Iodoethane: Iodomethane: ISO codes for mechanical design of heat exchangers, Isobutane: Isobutanol: Isobutylamine: Isobutylformate: Isobutyric acid: Isoparaffins: Isopentane: Isopentanol: Isopropanol: Isopropylacetate: Isopropylamine: Isopropylbenzene: Isopropylcyclohexane: Isothermal flow, compressible, in ducts, Isothermal gas, radiation heat transfer to walls from, Isotropic materials, elastic properties, Isotropic scattering, Italy, guide to national practice for heat exchanger mechanical design,

Index

HEDH
A B C D E F G H I
Ideal gas: Ilexan, heat transfer medium, Illingworth, A, Imbedded fins, Immersed bodies: Immersed tubes, in fluidized beds, heat transfer to, Immiscible liquids, condensation of vapors producing Impairment of heat transfer in combined free and forced convection in a vertical pipe, Imperfectly diffuse surfaces: Impingement damage in heat exchangers, Impingement plate: Impingement protection, in shell-and-tube heat exchangers, Impinging jets: Implicit equations, solution of Inclined enclosures, free convective heat transfer in, Inclined flow, effect of on heat transfer to cylinders, Inclined pipes: Inclined surfaces, free convective heat transfer from, Inconel, spectral characteristics of reflectance from oxidized surface of, Induced flow instabilities, in augmentation of heat transfer, Injection: Inlet effects in shell-and-tube heat exchangers, In-line tube banks: Inorganic compounds, solutions of, as heat transfer media, Inorganic substances: Instability, parallel channel, in condensers, Insulators, thermal conductivity of, Integral condensation: Integral finned tubes: Interaction coefficients in heat exchangers, Interaction parameters for binary systems, tables, Interfacial friction, in three-phase (liquid-liquid-gas) stratified flows, Interfacial resistance, in condensation, Interfacial roughness, relationships for, in annular gas-liquid flow, Interfacial shear stress, effect on filmwise condensation, on vertical surface, Intergrannular corrosion, of Intermating troughs, as corrugation design in plate heat exchangers, Intermittent flows: Internal heat sources, temperature distribution in bodies with, Internal heat transfer coefficient, use in transient conduction calculations, Internal reboilers (in distillation columns), characteristics advantages and disadvantages of, Internally finned tubes: International codes for pressure vessels, Interpenetrating continua (as representation of heat exchangers): Intertube velocity, in tube banks, Inviscid flow, compressible, with heat addition, Iodine: Iodobenzene: Iodoethane: Iodomethane: ISO codes for mechanical design of heat exchangers, Isobutane: Isobutanol: Isobutylamine: Isobutylformate: Isobutyric acid: Isoparaffins: Isopentane: Isopentanol: Isopropanol: Isopropylacetate: Isopropylamine: Isopropylbenzene: Isopropylcyclohexane: Isothermal flow, compressible, in ducts, Isothermal gas, radiation heat transfer to walls from, Isotropic materials, elastic properties, Isotropic scattering, Italy, guide to national practice for heat exchanger mechanical design,
J K L M N O P Q R S T U V W X Y Z

Film Condensation of Pure Vapour

DOI 10.1615/hedhme.a.000185

2.6 CONDENSATION
2.6.2 Film Condensation of Pure Vapour

A. Introduction

The various resistances to heat transfer during condensation are described in Section 184B. In condensation of a pure vapour, the main resistance is that of the film of condensate which forms on the cooled surface. With a laminar condensate film, heat transfer is by conduction so a thin film will give a lower resistance and therefore a higher heat transfer coefficient than a thick film. Turbulence in the film acts to increase the heat transfer coefficient. Vapour shear has the effect of thinning the film, inducing turbulence, and therefore of increasing the heat transfer coefficient. Other factors which affect the condensate heat transfer coefficient are waves on the film surface, droplet entrainment and deposition, condensate splashing, and condensate subcooling.

Section B provides methods for heat transfer with condensation on a vertical surface, which in a heat exchanger would normally be a vertical tube. Figure 1 illustrates condensation on a vertical surface when the vapour is considered to be stagnant and there is therefore no effect of vapour shear on the condensate film. The condensate drains vertically downwards under gravity, with a flowrate steadily increasing from zero at the top. At the very low film Reynolds numbers at the top of the surface the condensate flow is laminar and wave-free. At some point down the tube surface a transition occurs where waves form on the condensate film. This transition is due to instabilities at the vapour-liquid interface, and it can be characterised by the film Reynolds number. At a much higher Reynolds number there is a transition from laminar-type flow to turbulent flow. In the laminar region the heat transfer coefficient decreases as the Reynolds number increases. The rate of decrease becomes smaller in the laminar-wavy region because of the disturbances caused by the waves. In the turbulent region the higher effective viscosity causes the film to become thicker. However the overall effect in the turbulent region is that the heat transfer coefficient increases as the Reynolds number increases. This is because the increased convection due to turbulence more than compensates for the thickening film. Liquid metals can behave differently, as shown in Section F.

Figure 1 Condensation on a vertical surface in the absence of vapour shear

The effect of a downwards vapour velocity is to increase the heat transfer coefficient by both thinning the film and inducing turbulence (see Section B). An upward vapour velocity will tend to have the opposite effect. However a phenomenon known as flooding occurs before vapour velocities are high enough to affect heat transfer significantly. This phenomenon is where the upwards vapour flow prevents the condensate from draining from the bottom of the surface. This is discussed in Section B(e).

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here