Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of

Index

HEDH
A
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of
B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Condensation Enhancement

DOI 10.1615/hedhme.a.000189

2.6 CONDENSATION
2.6.6 Condensation Enhancement

A. Introduction

Condensation will occur on a surface whose temperature is below the vapor saturation temperature. The condensed liquid formed on the surface will exist either as a wetted film or in droplets. The condensate forms as droplets on the surface, if the condensate does not wet the surface. Although dropwise condensation yields a very high heat transfer coefficient, it cannot be permanently sustained. Dropwise condensation (see Section 188) may be promoted by liquid additives or surface coatings that inhibit surface wetting. As the surface slowly oxidizes, the surface will eventually become wetted, and the process will revert to filmwise condensation (see Section 185). Hence, filmwise condensation is currently the more important process.

This section is concerned with enhancement of condensation. Geometries include plates and tubes (horizontal and vertical). Condensation may occur either inside or outside the tube. The condensation coefficient will be increased by surface or body forces, which act on the condensate film and reduce its thickness. Without special "enhancement" effects the film thickness on a stationary surface is influenced by gravity and interfacial shear stresses. Depending on the surface orientation, interfacial shear forces may aid or impede the gravity force.

The technology of enhancement of film condensation involves the following basic phenomena: (1) Additional surface forces, such as surface tension, to locally thin the film, (2) Additional body forces, such as electric fields or centrifugal force to pull the condensate off the surface, (3) Surface roughness tomix the condensate film. The effectiveness of these possible methods depends on the magnitude and direction of the imposed force, relative to the existing interfacial shear and gravity forces. The surface orientation and vapor velocity have a significant effect on the importance of the interfacial shear and gravity forces, respectively. Because the surface orientation and the number of forces that may act on the condensate film will affect the condensation coefficient, it is appropriate to segregate the discussion of enhancement into sub-sections, which depend on the surface orientation, vapor velocity, and the imposed enhancement techniques.

Because interfacial shear force may significantly alter the condensation coefficient, we will first address enhancement "without vapor shear" effects. Then, the survey will be concluded by geometries for which significant vapor shear effects exist. Vapor shear effects are important for both condensation inside tubes and on tube bundles.

1.4, = 4.742 and = 0.0. Again, this empirical correlation does not account for probable surface tension drainage effects or fin efficiency. However, it is probably the most general of those presented. The correlation predicted 71% of the data points within ± 30%.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here