Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Rabas and Taborek correlation, for heat transfer in banks of low fin tubes, Rackett equation (modified) for liquid density Radiation: Radiation shields, in radiation heat transfer, Radiation source analysis, Radiative heat transfer: Radiators, automotive, construction, Radiometers, application in gas radiation property measurement, Radiosity, Stephan's law for, Radiosity-irradiation formulations in radiative heat transfer, Rankine cycle in refrigeration, Rao, B K Raoult's law for partial pressure, Rating of heat exchangers, Rayleigh instability, in free convection, Rayleigh number Reay, D Reboilers: Reciprocal mode integrating sphere, for reflection and transmission measurements in radiation, Rectangles: Rectangular ducts: Rectangular enclosures, free convective heat transfer in: Rectangular fins, for plate fin exchangers Reduced pressure, correlations for pool boiling using, Reference temperature: Refinery processes, fouling in, Reflection, of thermal radiation, from solid surfaces: Reflectivity, of solid surfaces, Reflectometer, heated cavity, Reflux condensers, Refractories, density of, Refractory surfaces, Refrigerants: Refrigerant 11 (Trichlorofluoromethane): Refrigerant 12 (Dichlorodifluoromethane): Refrigerant 13 (Chlorotrifluoromethane): Refrigerant 21 (Dichlorofluoromethane): Refrigerant 22 (Chlorodifluoromethane): Refrigerant 116: Refrigerant plant, entropy generation in, Refrigeration, heat transfer in, Regenerators and thermal energy storage, Regimes of heat transfer, in ducts, single phase flow, Reidel method, for predicting enthalpy of vaporisation, Reinforcing rings, for expansion bellows, Relaminarization, of turbulent flow, Reichenberg method, for effect of pressure on gas viscosity, Relief system design for shell-and-tube heat exchangers with tube side failure, Removal of fouling deposits: Renewable fuels, properties of, Renotherm, heat transfer medium, Repair, of expansion bellows, Residence times, in dryers: Resistance network analysis, Resistance (thermal) due to fouling: Reversible (minimum) work, in Reynolds number, Reynolds stress models, for turbulence, Rheologically complex materials, properties of: Rheological properties of drag reducing agents Rheology, shear flow experiments used in, Rhine, J M, Ribatski, G, Riblets for drag reduction, Richardson number, Richie, J M, Ring cells, in free convection, RODbaffles, in tube bundles with longitudinal flow, Rod bundles: Rohsenow correlation, for nucleate boiling, Roll cells, in free convection, Roller expansion, of tubes into tube sheets, Rose, J W, Rossby number, Rotary dryer, Rotating drums, heat transfer to particle bed in, Rotating surface, in an annular duct Rotation, as device for heat transfer augmentation, Roughness, surface: Rough walled passages, radiative heat transfer down, Rubber (sponge) balls, in fouling mitigation, Ryznar index for water quality,

Index

HEDH
A B C D E F G H I J K L M N O P Q R
Rabas and Taborek correlation, for heat transfer in banks of low fin tubes, Rackett equation (modified) for liquid density Radiation: Radiation shields, in radiation heat transfer, Radiation source analysis, Radiative heat transfer: Radiators, automotive, construction, Radiometers, application in gas radiation property measurement, Radiosity, Stephan's law for, Radiosity-irradiation formulations in radiative heat transfer, Rankine cycle in refrigeration, Rao, B K Raoult's law for partial pressure, Rating of heat exchangers, Rayleigh instability, in free convection, Rayleigh number Reay, D Reboilers: Reciprocal mode integrating sphere, for reflection and transmission measurements in radiation, Rectangles: Rectangular ducts: Rectangular enclosures, free convective heat transfer in: Rectangular fins, for plate fin exchangers Reduced pressure, correlations for pool boiling using, Reference temperature: Refinery processes, fouling in, Reflection, of thermal radiation, from solid surfaces: Reflectivity, of solid surfaces, Reflectometer, heated cavity, Reflux condensers, Refractories, density of, Refractory surfaces, Refrigerants: Refrigerant 11 (Trichlorofluoromethane): Refrigerant 12 (Dichlorodifluoromethane): Refrigerant 13 (Chlorotrifluoromethane): Refrigerant 21 (Dichlorofluoromethane): Refrigerant 22 (Chlorodifluoromethane): Refrigerant 116: Refrigerant plant, entropy generation in, Refrigeration, heat transfer in, Regenerators and thermal energy storage, Regimes of heat transfer, in ducts, single phase flow, Reidel method, for predicting enthalpy of vaporisation, Reinforcing rings, for expansion bellows, Relaminarization, of turbulent flow, Reichenberg method, for effect of pressure on gas viscosity, Relief system design for shell-and-tube heat exchangers with tube side failure, Removal of fouling deposits: Renewable fuels, properties of, Renotherm, heat transfer medium, Repair, of expansion bellows, Residence times, in dryers: Resistance network analysis, Resistance (thermal) due to fouling: Reversible (minimum) work, in Reynolds number, Reynolds stress models, for turbulence, Rheologically complex materials, properties of: Rheological properties of drag reducing agents Rheology, shear flow experiments used in, Rhine, J M, Ribatski, G, Riblets for drag reduction, Richardson number, Richie, J M, Ring cells, in free convection, RODbaffles, in tube bundles with longitudinal flow, Rod bundles: Rohsenow correlation, for nucleate boiling, Roll cells, in free convection, Roller expansion, of tubes into tube sheets, Rose, J W, Rossby number, Rotary dryer, Rotating drums, heat transfer to particle bed in, Rotating surface, in an annular duct Rotation, as device for heat transfer augmentation, Roughness, surface: Rough walled passages, radiative heat transfer down, Rubber (sponge) balls, in fouling mitigation, Ryznar index for water quality,
S T U V W X Y Z

Heat transfer from a wall to granular products

DOI 10.1615/hedhme.a.000202

2.8 HEAT TRANSFER TO GAS-SOLID SYSTEMS
2.8.3 Heat Transfer From a Wall to Granular Products

A. General Method of Calculation

In the applications referred to in Section 201, the fluid flowing through the packed bed has, typically, to be processed, and the solids help to do this in an efficient way. In many cases, however, the solids themselves are the product to be treated thermally by contact with a heat exchanger surface. The heat transfer coefficient α can be expressed in general form as

\[\label{eq1} \frac{1}{\alpha}=\dfrac{1}{\alpha_{\rm ws}}+\dfrac{1}{\alpha_{\rm bed}}\tag{1}\,,\]

with

\[\label{eq2} \alpha_{\rm bed}=\dfrac{2}{\sqrt{\pi}}\dfrac{\sqrt{(\lambda\rho c)_{{\rm bed},i}}}{\sqrt{t_{j}}}f(\mbox{Ph})\tag{2}\]

for particles of aluminum silicate, , : emissivities of wall, respectively, bed, = ): radiation coefficient of the black body]. For the modified mean-free path of the gas molecules , can be applied.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here