Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:

Index

HEDH
A B C D E F G H
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:
I J K L M N O P Q R S T U V W X Y Z

Introduction

DOI 10.1615/hedhme.a.000233

2.14.1 Introduction

A. Background

A considerable amount of energy is used in the pumping of fluids in turbulent flow through pipeline systems. Clearly, there is a potential benefit in such systems if the drag (i.e. the pressure drop) could be reduced below the value dictated by the normal friction factor relationships. Drag reduction is also important in the motion of objects (such as ships or submarines) through fluids. The search for means of reducing drag has been pursued actively for many decades. Drag reduction can be achieved by adding materials (polymers, surfactants, bubbles) to the fluids or by modifying the surface of the solid with which the fluid is in contact. The objective of this introductory section is to briefly review the various means of drag reduction. More detailed information on the more important methodologies is given in the succeeding sections.

There have been extensive publications on the subject of drag reduction and the literature on drag reduction probably now extends to several thousand papers and the magnitude of the task of considering every source will be appreciated. In this Section and the succeeding ones, the objective has been to consider a sufficient number of sources to pick out the key phenomena and prediction methods. Reflecting the large size of the literature on the subject, a number of review articles have been written and have been studied as part of the current exercise. These include the reviews by Lumley (1969), Virk (1975), Berman (1978), Hoyt (1989), and Pazwash (1984). In a report from the British Hydrodynamics Research Association (BHRA), White (1975) lists 1,009 publications on drag reduction, though these include a (small) number of papers on drag reduction methods such as compliant surfaces. Most papers have been concerned with polymers and surfactants as drag reduction promoters but it should be stressed that suspended particles can also act to reduce drag (Kane, 1989). It should also be noted that drag reduction with high molecular weight substances also occurs in nature; fish slimes, which produce drag reduction for swimming fish, contain such substances.

The main emphasis in this and the succeeding sections is on the use of drag reduction technologies to reduce the pressure drop in flow in pipes. The percentage drag reduction for pipe flow is defined as:

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here