Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Packaged units, specification of, Packing characteristic, in cooling towers, Packings, for cooling towers Packings, for fixed beds: Packinox heat exchanger, Paints, spectral characteristics of reflectance of surfaces treated with, Palen, J W Panchal, C B, Paraffins, normal and isonormal: Paraldehyde: Parallel channel instability, in condensers, Partial boiling in subcooled forced convective heat transfer, Participating media, radiation interaction in, Particle convective component, in heat transfer from fluidized beds, Particle emissivity, Particle Reynolds number in fixed beds, Particles: Particulate fluidization, Particulate fouling, Pass arrangements, in plate heat exchangers, Passes, tube side, Passive methods, for augmentation of heat transfer, passive systems for: PD5500 mechanical design of shell-and-tube heat exchangers to, Peacock, D K, Pearson number, Peclet number Peng-Robinson equation of state, application to hydrocarbons, Penner's rule, in absorption of radiation by gases, Pentachloroethane (Refrigerant 120): Pentadecane: Pentadecene: Pentadiene 1, 2: Pentadiene 1, trans 3: Pentadiene 1, 4: Pentadiene 2-3: Pentafluoroethane (Refrigerant 125) Pentamethylbenzene: Pentane: Pentanoic acid: 1-Pentanol: 1-Pentene: cis-2-Pentene: trans-2-Pentene: Pentylacetate: Pentylbenzene: Pentylcyclohexane: Pentylcyclopentane: Pentylcyclopropane, liquid properties, Perforated fins, in plate fin heat exchangers, Perforated plates, loss coefficients in, Periodic operation, of regenerator, Periodic variations in temperature, thermal conduction in bodies with, PFR correlation, for heat transfer in high fin tube banks, Pharmaceutical industry, fouling of heat exchangers in, Phase change materials, in augmentation of heat transfer, Phase change number, Phase equilibrium: Phase inversion Phase separation, as source of corrosion problems, Phenol: Phenols: Phenylhydrazine: Phonons, in thermal conductivity of solids, Phosgene: Physical properties: Pi theorum, in dimensional analysis, Pinch analysis, for heat exchanger network design, Pioro, I L Pioro, LS, Pipe leads, Piperidine: Pipes, circular: Pipes, noncircular: Piping components: Pitting corrosion, in stainless steels, Planck's constant, Planck's law, for spectral distribution of blackbody radiation, Plane shells, steady-state thermal conduction in, Plastic deformation Plate fin heat exchangers Plate fins, efficiency, Plate heat exchangers: Plate evaporator Plates: Plug flow: Plug flow model, for furnaces, Pneumatic conveyance, Pneumatic conveying dryer, P-NTU method: Polarization, of thermal radiation, Polyglycols, as heat transfer media, Polymers: Pool boiling, Porous surfaces: Port arrangements, in plate heat exchangers, Portable fouling unit, Poskas, P, Postdryout heat transfer: Powders: Power law fluid (non-Newtonian), Power plant: Prandtl number Precipitation (crystallization) fouling, Precipitation hardening, of stainless steels, Pressure coefficient: Pressure control of condensers, Pressure drop: Pressure gradient: Pressure, specification of in mechanical design to EN13445, Pressure testing, Pressure vessels, principle codes for, Pressurised water reactor, fouling in, Printed circuit heat exchanger, Problem table algorithm, in pinch analysis, Process heaters: Progressive plastic deformation Prolate spheroids, free convective heat transfer from, Promoters, in dropwise condensation, Propadiene: Propane: 1-Propanol: 2-Propanol: Propeller agitator, Property ratio method, for temperature dependent physical property Propionaldehyde: Propionic acid: Propionic anhydride: Proprionitrile: Propyl acetate: Propylamine: Propylbenzene: Propylcyclohexane: Propylcyclopentane: Propylene: 1,3-Propylene glycol: Propylene oxide: Propyl formate: Propyl propionate: Pseudo-boiling in supercritical fluids, Pseudo-film boiling in supercritical fluids, Pseudocritical pressure, Pseudocritical tempertaure, Pugh, S F Pulp and paper industry, fouling of heat exchangers in, Pulsations, use in augmentation of heat transfer, Pulverized fuel water-tube boiler, Pumping, lost work in, Pushkina and Sorokin correlation, for flooding in vertical tubes, Pyramid, free convective heat transfer from, Pyridine:

Index

HEDH
A B C D E F G H I J K L M N O P
Packaged units, specification of, Packing characteristic, in cooling towers, Packings, for cooling towers Packings, for fixed beds: Packinox heat exchanger, Paints, spectral characteristics of reflectance of surfaces treated with, Palen, J W Panchal, C B, Paraffins, normal and isonormal: Paraldehyde: Parallel channel instability, in condensers, Partial boiling in subcooled forced convective heat transfer, Participating media, radiation interaction in, Particle convective component, in heat transfer from fluidized beds, Particle emissivity, Particle Reynolds number in fixed beds, Particles: Particulate fluidization, Particulate fouling, Pass arrangements, in plate heat exchangers, Passes, tube side, Passive methods, for augmentation of heat transfer, passive systems for: PD5500 mechanical design of shell-and-tube heat exchangers to, Peacock, D K, Pearson number, Peclet number Peng-Robinson equation of state, application to hydrocarbons, Penner's rule, in absorption of radiation by gases, Pentachloroethane (Refrigerant 120): Pentadecane: Pentadecene: Pentadiene 1, 2: Pentadiene 1, trans 3: Pentadiene 1, 4: Pentadiene 2-3: Pentafluoroethane (Refrigerant 125) Pentamethylbenzene: Pentane: Pentanoic acid: 1-Pentanol: 1-Pentene: cis-2-Pentene: trans-2-Pentene: Pentylacetate: Pentylbenzene: Pentylcyclohexane: Pentylcyclopentane: Pentylcyclopropane, liquid properties, Perforated fins, in plate fin heat exchangers, Perforated plates, loss coefficients in, Periodic operation, of regenerator, Periodic variations in temperature, thermal conduction in bodies with, PFR correlation, for heat transfer in high fin tube banks, Pharmaceutical industry, fouling of heat exchangers in, Phase change materials, in augmentation of heat transfer, Phase change number, Phase equilibrium: Phase inversion Phase separation, as source of corrosion problems, Phenol: Phenols: Phenylhydrazine: Phonons, in thermal conductivity of solids, Phosgene: Physical properties: Pi theorum, in dimensional analysis, Pinch analysis, for heat exchanger network design, Pioro, I L Pioro, LS, Pipe leads, Piperidine: Pipes, circular: Pipes, noncircular: Piping components: Pitting corrosion, in stainless steels, Planck's constant, Planck's law, for spectral distribution of blackbody radiation, Plane shells, steady-state thermal conduction in, Plastic deformation Plate fin heat exchangers Plate fins, efficiency, Plate heat exchangers: Plate evaporator Plates: Plug flow: Plug flow model, for furnaces, Pneumatic conveyance, Pneumatic conveying dryer, P-NTU method: Polarization, of thermal radiation, Polyglycols, as heat transfer media, Polymers: Pool boiling, Porous surfaces: Port arrangements, in plate heat exchangers, Portable fouling unit, Poskas, P, Postdryout heat transfer: Powders: Power law fluid (non-Newtonian), Power plant: Prandtl number Precipitation (crystallization) fouling, Precipitation hardening, of stainless steels, Pressure coefficient: Pressure control of condensers, Pressure drop: Pressure gradient: Pressure, specification of in mechanical design to EN13445, Pressure testing, Pressure vessels, principle codes for, Pressurised water reactor, fouling in, Printed circuit heat exchanger, Problem table algorithm, in pinch analysis, Process heaters: Progressive plastic deformation Prolate spheroids, free convective heat transfer from, Promoters, in dropwise condensation, Propadiene: Propane: 1-Propanol: 2-Propanol: Propeller agitator, Property ratio method, for temperature dependent physical property Propionaldehyde: Propionic acid: Propionic anhydride: Proprionitrile: Propyl acetate: Propylamine: Propylbenzene: Propylcyclohexane: Propylcyclopentane: Propylene: 1,3-Propylene glycol: Propylene oxide: Propyl formate: Propyl propionate: Pseudo-boiling in supercritical fluids, Pseudo-film boiling in supercritical fluids, Pseudocritical pressure, Pseudocritical tempertaure, Pugh, S F Pulp and paper industry, fouling of heat exchangers in, Pulsations, use in augmentation of heat transfer, Pulverized fuel water-tube boiler, Pumping, lost work in, Pushkina and Sorokin correlation, for flooding in vertical tubes, Pyramid, free convective heat transfer from, Pyridine:
Q R S T U V W X Y Z

Types of Heat Exchangers and Their Applications

DOI 10.1615/hedhme.a.000238

3.1 INTRODUCTION TO HEAT EXCHANGER DESIGN
3.1.2 Types of heat exchangers and their applications

A. Selection of a basic type of heat exchanger

The most important decision underlying design of a piece of heat transfer equipment is the selection of the basic type of equipment to be specified and designed for a given application. It is incumbent upon the designer, at a very early stage in the design process, to survey the range of basic equipment types available and to select the one most applicable to his or her particular process. If a clear-cut decision cannot be made, it will probably prove economically desirable to proceed with at least first-stage design on each type of equipment that may reasonably serve.

A consideration that often enters into the selection of a basic type is the availability of comprehensive and accurate design methods for that equipment. Thus, shell-and-tube exchangers, for which a generally very good design procedure is available, are often selected for a service in preference to another type that may be intrinsically preferable in the application but which lacks a comparable design method in which the designer may place confidence. There is justification for this philosophy, but it can be bought at too high a price. Most heat exchanger types have good design methods available for most applicable services, though the best methods are often proprietary to the manufacturers or to members of cooperative research organizations.

B. Double-pipe heat exchangers

A typical double-pipe heat exchanger is shown in Figure 1. Essentially, it consists of one pipe placed concentrically inside another one of larger diameter, with appropriate end fittings on each pipe to guide the fluids from one section to the next. The inner pipe may have longitudinal fins welded, brazed, or soldered to it either internally or externally to increase the heat transfer area for the fluid with the lower heat transfer coefficient. The double-pipe sections can be connected in various series or parallel arrangements for either fluid to meet pressure drop limitations and MTD requirements. The major use of double-pipe exchangers is for sensible heating or cooling of the process fluid where small heat transfer areas (typically up to 50 m2) are required. They may also be used for small amounts of boiling or condensation on the process fluid side.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here