Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of

Index

HEDH
A
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of
B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Input Data and Recommended Practices

DOI 10.1615/hedhme.a.000251

3.3.5 Input data and recommended practices

In this section we deal with three subjects:

  1. The basic set of input data as required for shell-side rating calculations, but also including those required for design of the overall exchanger, that is, including tube-side flow. These are presented in Table 1.
  2. Detailed comments to the input data, to give guidance to the designer as to proper practices and standards.
  3. Preliminary calculations of correlational parameters derived from the input data, as required for subsequent calculations.

Table 1 Input data required for rating of segmentally baffled shell-and-tube exchangers

ItemSymbolUnitsDescription
Shell-side geometry data
Tube and tube layout
1DsmmInside shell diameter
2DtmmTube outside diameter
3LtwmmTube wall thickness
4DtimmInside tube diameter
5λtwW/m KTube wall material thermal conductivity
6LtpmmTube layout pitch
7θtpdegTube layout characteristic angle
Tube length (Refer to Figure 2)
8LtommOverall nominal tube length
9LtimmBaffled tube length
10LtammEffective tube length for heat transfer area
Baffle geometry (Figure 7)
11Bc%Baffle cut as percent of Ds
12LbcmmCentral baffle spacing
13aLbimmInlet baffle spacing (optional)
13bLbommOutlet baffle spacing (optional)
Nozzle
14CNcodeShell-side nozzle, impingement protection, annular distributor
Tube bundle geometry
15NttTotal number of tubes or holes in tubesheet for U-tubes
16NtpNumber of tube passes
17NssNumber of sealing strips (pairs)
18CBcodeTube bundle type (FX, UT, SRFH, PFH, PTFH)
19LtbmmTube OD (Dt)-to-baffle hole clearance (diametral), Figure 12
20LsbmmInside shell-to-baffle clearance (diametral), Figure 13
21LbbmmInside shell-to-tube bundle bypass clearance (diametral), Figure 14
Temperatures
22Tsi°CShell-side temperature inlet
23Tso°CShell-side temperature outlet
24Tti°CTube-side temperature inlet
25Tto°CTube-side temperature outlet
Shell-side process information
26skg/sShell fluid mass flow rate
At shell fluid mean temperature
27ρskg/m3Density
28λsW/m KThermal conductivity
29(cp)sJ/kg KSpecific heat
30ηscP = mPa/sDynamic viscosity (may require two values)
31Rf,omK/WShell-side fouling resistance (referred to shell-side surface)
Tube-side process information
32tkg/sTube fluid mass flow rate
At tube fluid mean temperature
33ρtkg/m3Density
34λtW/m KThermal conductivity
35(cp)tJ/kg KSpecific heat
36ηtcP = mPa/sDynamic viscosity (may require two values)
37Rf,im K/WTube-side fouling resistance (referred to inside tube surface)
Special information
38αsW/m2 KShell-side heat transfer coefficient; if specified, omit items as shown in comments
39αtW/m2 KTube-side heat transfer coefficient; if specified, omit items as shown in comments
40ps)maxkPaMaximum permissible pressure drop, shell side
41pt)maxkPaMaximum permissible pressure drop, tube side
42(vt)maxm/sMaximum permissible tube-side flow velocity (optional)
43(vt)minm/sMinimum acceptable tube-side flow velocity (optional)

A. Basic input data

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here