Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Rabas and Taborek correlation, for heat transfer in banks of low fin tubes, Rackett equation (modified) for liquid density Radiation: Radiation shields, in radiation heat transfer, Radiation source analysis, Radiative heat transfer: Radiators, automotive, construction, Radiometers, application in gas radiation property measurement, Radiosity, Stephan's law for, Radiosity-irradiation formulations in radiative heat transfer, Rankine cycle in refrigeration, Rao, B K Raoult's law for partial pressure, Rating of heat exchangers, Rayleigh instability, in free convection, Rayleigh number Reay, D Reboilers: Reciprocal mode integrating sphere, for reflection and transmission measurements in radiation, Rectangles: Rectangular ducts: Rectangular enclosures, free convective heat transfer in: Rectangular fins, for plate fin exchangers Reduced pressure, correlations for pool boiling using, Reference temperature: Refinery processes, fouling in, Reflection, of thermal radiation, from solid surfaces: Reflectivity, of solid surfaces, Reflectometer, heated cavity, Reflux condensers, Refractories, density of, Refractory surfaces, Refrigerants: Refrigerant 11 (Trichlorofluoromethane): Refrigerant 12 (Dichlorodifluoromethane): Refrigerant 13 (Chlorotrifluoromethane): Refrigerant 21 (Dichlorofluoromethane): Refrigerant 22 (Chlorodifluoromethane): Refrigerant 116: Refrigerant plant, entropy generation in, Refrigeration, heat transfer in, Regenerators and thermal energy storage, Regimes of heat transfer, in ducts, single phase flow, Reidel method, for predicting enthalpy of vaporisation, Reinforcing rings, for expansion bellows, Relaminarization, of turbulent flow, Reichenberg method, for effect of pressure on gas viscosity, Relief system design for shell-and-tube heat exchangers with tube side failure, Removal of fouling deposits: Renewable fuels, properties of, Renotherm, heat transfer medium, Repair, of expansion bellows, Residence times, in dryers: Resistance network analysis, Resistance (thermal) due to fouling: Reversible (minimum) work, in Reynolds number, Reynolds stress models, for turbulence, Rheologically complex materials, properties of: Rheological properties of drag reducing agents Rheology, shear flow experiments used in, Rhine, J M, Ribatski, G, Riblets for drag reduction, Richardson number, Richie, J M, Ring cells, in free convection, RODbaffles, in tube bundles with longitudinal flow, Rod bundles: Rohsenow correlation, for nucleate boiling, Roll cells, in free convection, Roller expansion, of tubes into tube sheets, Rose, J W, Rossby number, Rotary dryer, Rotating drums, heat transfer to particle bed in, Rotating surface, in an annular duct Rotation, as device for heat transfer augmentation, Roughness, surface: Rough walled passages, radiative heat transfer down, Rubber (sponge) balls, in fouling mitigation, Ryznar index for water quality,

Index

HEDH
A B C D E F G H I J K L M N O P Q R
Rabas and Taborek correlation, for heat transfer in banks of low fin tubes, Rackett equation (modified) for liquid density Radiation: Radiation shields, in radiation heat transfer, Radiation source analysis, Radiative heat transfer: Radiators, automotive, construction, Radiometers, application in gas radiation property measurement, Radiosity, Stephan's law for, Radiosity-irradiation formulations in radiative heat transfer, Rankine cycle in refrigeration, Rao, B K Raoult's law for partial pressure, Rating of heat exchangers, Rayleigh instability, in free convection, Rayleigh number Reay, D Reboilers: Reciprocal mode integrating sphere, for reflection and transmission measurements in radiation, Rectangles: Rectangular ducts: Rectangular enclosures, free convective heat transfer in: Rectangular fins, for plate fin exchangers Reduced pressure, correlations for pool boiling using, Reference temperature: Refinery processes, fouling in, Reflection, of thermal radiation, from solid surfaces: Reflectivity, of solid surfaces, Reflectometer, heated cavity, Reflux condensers, Refractories, density of, Refractory surfaces, Refrigerants: Refrigerant 11 (Trichlorofluoromethane): Refrigerant 12 (Dichlorodifluoromethane): Refrigerant 13 (Chlorotrifluoromethane): Refrigerant 21 (Dichlorofluoromethane): Refrigerant 22 (Chlorodifluoromethane): Refrigerant 116: Refrigerant plant, entropy generation in, Refrigeration, heat transfer in, Regenerators and thermal energy storage, Regimes of heat transfer, in ducts, single phase flow, Reidel method, for predicting enthalpy of vaporisation, Reinforcing rings, for expansion bellows, Relaminarization, of turbulent flow, Reichenberg method, for effect of pressure on gas viscosity, Relief system design for shell-and-tube heat exchangers with tube side failure, Removal of fouling deposits: Renewable fuels, properties of, Renotherm, heat transfer medium, Repair, of expansion bellows, Residence times, in dryers: Resistance network analysis, Resistance (thermal) due to fouling: Reversible (minimum) work, in Reynolds number, Reynolds stress models, for turbulence, Rheologically complex materials, properties of: Rheological properties of drag reducing agents Rheology, shear flow experiments used in, Rhine, J M, Ribatski, G, Riblets for drag reduction, Richardson number, Richie, J M, Ring cells, in free convection, RODbaffles, in tube bundles with longitudinal flow, Rod bundles: Rohsenow correlation, for nucleate boiling, Roll cells, in free convection, Roller expansion, of tubes into tube sheets, Rose, J W, Rossby number, Rotary dryer, Rotating drums, heat transfer to particle bed in, Rotating surface, in an annular duct Rotation, as device for heat transfer augmentation, Roughness, surface: Rough walled passages, radiative heat transfer down, Rubber (sponge) balls, in fouling mitigation, Ryznar index for water quality,
S T U V W X Y Z

Input Data and Recommended Practices

DOI 10.1615/hedhme.a.000251

3.3.5 Input data and recommended practices

In this section we deal with three subjects:

  1. The basic set of input data as required for shell-side rating calculations, but also including those required for design of the overall exchanger, that is, including tube-side flow. These are presented in Table 1.
  2. Detailed comments to the input data, to give guidance to the designer as to proper practices and standards.
  3. Preliminary calculations of correlational parameters derived from the input data, as required for subsequent calculations.

Table 1 Input data required for rating of segmentally baffled shell-and-tube exchangers

ItemSymbolUnitsDescription
Shell-side geometry data
Tube and tube layout
1DsmmInside shell diameter
2DtmmTube outside diameter
3LtwmmTube wall thickness
4DtimmInside tube diameter
5λtwW/m KTube wall material thermal conductivity
6LtpmmTube layout pitch
7θtpdegTube layout characteristic angle
Tube length (Refer to Figure 2)
8LtommOverall nominal tube length
9LtimmBaffled tube length
10LtammEffective tube length for heat transfer area
Baffle geometry (Figure 7)
11Bc%Baffle cut as percent of Ds
12LbcmmCentral baffle spacing
13aLbimmInlet baffle spacing (optional)
13bLbommOutlet baffle spacing (optional)
Nozzle
14CNcodeShell-side nozzle, impingement protection, annular distributor
Tube bundle geometry
15NttTotal number of tubes or holes in tubesheet for U-tubes
16NtpNumber of tube passes
17NssNumber of sealing strips (pairs)
18CBcodeTube bundle type (FX, UT, SRFH, PFH, PTFH)
19LtbmmTube OD (Dt)-to-baffle hole clearance (diametral), Figure 12
20LsbmmInside shell-to-baffle clearance (diametral), Figure 13
21LbbmmInside shell-to-tube bundle bypass clearance (diametral), Figure 14
Temperatures
22Tsi°CShell-side temperature inlet
23Tso°CShell-side temperature outlet
24Tti°CTube-side temperature inlet
25Tto°CTube-side temperature outlet
Shell-side process information
26skg/sShell fluid mass flow rate
At shell fluid mean temperature
27ρskg/m3Density
28λsW/m KThermal conductivity
29(cp)sJ/kg KSpecific heat
30ηscP = mPa/sDynamic viscosity (may require two values)
31Rf,omK/WShell-side fouling resistance (referred to shell-side surface)
Tube-side process information
32tkg/sTube fluid mass flow rate
At tube fluid mean temperature
33ρtkg/m3Density
34λtW/m KThermal conductivity
35(cp)tJ/kg KSpecific heat
36ηtcP = mPa/sDynamic viscosity (may require two values)
37Rf,im K/WTube-side fouling resistance (referred to inside tube surface)
Special information
38αsW/m2 KShell-side heat transfer coefficient; if specified, omit items as shown in comments
39αtW/m2 KTube-side heat transfer coefficient; if specified, omit items as shown in comments
40ps)maxkPaMaximum permissible pressure drop, shell side
41pt)maxkPaMaximum permissible pressure drop, tube side
42(vt)maxm/sMaximum permissible tube-side flow velocity (optional)
43(vt)minm/sMinimum acceptable tube-side flow velocity (optional)

A. Basic input data

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here