Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Lamella heat exchangers, Laminar flow: Laminar flow control, of boundary layers, Lancaster, J F, Langelier index for water quality, Large eddy simulation, in prediction of turbulent boundary layers, Laws for turbulent flows: Layers of fluid, free convection heat transfer in, Le Fevre equations for free convective heat transfer, Leakage between streams, in shell-and-tube heat exchangers Leakage effects, on heat transfer and pressure drop in shell-and-tube heat exchangers, Leaks, in heat exchanger, sealing by explosive welding, Lebedev, M E, Lee and Kesler equation, for vapour pressure, L-footed fins, Lessing rings, characteristic of, as packings for fixed beds, Li equation, for critical temperature of mixtures, Lienhard and Dhir analysis of critical heat flux in pool boiling, Lienhard and Eichhorn criterion, for transition in critical heat flux mechanism in crossflow over single tube, Lift force: Liley, P E, Limb, D, Limpet coils: Linnhoff, B, Liquefaction, exergy analysis of, Liquid fluidized beds, Liquid fuels, properties of, Liquid hold-up, Liquid-liquid-gas flow, Liquid-liquid flow, Liquid metals: Liquid sheets, in direct contact heat transfer, Liquid-solid interfaces, fouling at, Liquids: Lister, D H, Local conditions hypothesis, for critical heat flux in flow boiling, Lockhart and Martinelli correlations: Lodge's rubberlike liquid (non-Newtonian), Logarithmic law region, Logarithmic mean temperature difference Longitudinal flow and heat transfer in tube banks, Long-tube vertical evaporator, Loss coefficient, Lost work in unit operations/exergy analysis, Louvered fins, in plate fin exchangers, Low-alloy steels: Low-finned tubes: Low-nickel steels, Lubricants, physical properties: Lucas methods

Index

HEDH
A B C D E F G H I J K L
Lamella heat exchangers, Laminar flow: Laminar flow control, of boundary layers, Lancaster, J F, Langelier index for water quality, Large eddy simulation, in prediction of turbulent boundary layers, Laws for turbulent flows: Layers of fluid, free convection heat transfer in, Le Fevre equations for free convective heat transfer, Leakage between streams, in shell-and-tube heat exchangers Leakage effects, on heat transfer and pressure drop in shell-and-tube heat exchangers, Leaks, in heat exchanger, sealing by explosive welding, Lebedev, M E, Lee and Kesler equation, for vapour pressure, L-footed fins, Lessing rings, characteristic of, as packings for fixed beds, Li equation, for critical temperature of mixtures, Lienhard and Dhir analysis of critical heat flux in pool boiling, Lienhard and Eichhorn criterion, for transition in critical heat flux mechanism in crossflow over single tube, Lift force: Liley, P E, Limb, D, Limpet coils: Linnhoff, B, Liquefaction, exergy analysis of, Liquid fluidized beds, Liquid fuels, properties of, Liquid hold-up, Liquid-liquid-gas flow, Liquid-liquid flow, Liquid metals: Liquid sheets, in direct contact heat transfer, Liquid-solid interfaces, fouling at, Liquids: Lister, D H, Local conditions hypothesis, for critical heat flux in flow boiling, Lockhart and Martinelli correlations: Lodge's rubberlike liquid (non-Newtonian), Logarithmic law region, Logarithmic mean temperature difference Longitudinal flow and heat transfer in tube banks, Long-tube vertical evaporator, Loss coefficient, Lost work in unit operations/exergy analysis, Louvered fins, in plate fin exchangers, Low-alloy steels: Low-finned tubes: Low-nickel steels, Lubricants, physical properties: Lucas methods
M N O P Q R S T U V W X Y Z

Extension of the Method to Other Shell, Baffle and Tube Bundle Geometries

DOI 10.1615/hedhme.a.000257

3.3.11 Extension of the method to other shell, baffle, and tube bundle geometries

The Delaware method, as originally developed and on which the method presented here is based, is more or less explicitly confined to the design of fully-tubed E-shell configurations using plain tubes. However, there are many process reasons-better balance required between the shell-side and the tube-side heat transfer coefficients, vibration problems, more effective use of available shell-side pressure drop in low-pressure-drop cases, etc. — that lead to the importance of applying the method to variant configurations.

The most important alternative geometries and how the method can be adapted to them are dealt with in this section. However, only a few can be described explicitly at this time. Others are explained only qualitatively, as additional correlational work is necessary. It is foreseen that these will be included in a forthcoming supplement.

For detailed description of the various shell and bundle geometries, refer to Section 4.2.

A. Divided flow, TEMA J shell

A diagramatic sketch of this arrangement is shown in Figure 1 with a single inlet nozzle and two outlet nozzles.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here