Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Cabin heater, Caetano, EF Calcium carbonate, fouling of heat exchangers by, Calcium sulphate, fouling of heat exchangers by, CALFLO, heat transfer media, Calorically perfect gas, CANDU Reactor, fouling problems in, Carbon dioxide: Carbon disulfide: Carbon monoxide: Carbon steel: Carbon-manganese steels Carbon-molybdenum steels, Carbon tetrachloride: Carbonyl sulfide: Carboxylic acids: Carnot cycle in refrigeration, Carnot factor, Carreau fluid (non-Newtonian), Carryover of solids in fluidized beds, Cashman, B L, Cast iron, thermal and mechanical properties, Cavitation as source of damage in heat exchangers, Cell method, for heat exchanger effectiveness, Cement kilns, CEN code for pressure vessels, Centrifugal dryer, Ceramics Certification of heat exchangers, Chan, S H, Channel emissivity, Chapman-Rubescin formula for viscosity variation with temperature, Chemical exergy, Chemical formulas of commonly used fluids Chemical industry, fouling of heat exchangers in, Chemical reactions, exergy analysis of, Chemical reaction fouling, Chen correlation for forced convective boiling, Chen method, for enthalpy of vaporisation, Chenoweth, J M, Chevron troughs as corrugation design in plate heat exchangers, Chillers, construction features of, Chilton-Colburn analogy, Chisholm, D Chisholm correlations: Chlorine: Chloroacetic acid: Chlorobenzene: Chlorobutane: Chlorodifluoromethane (see Refrigerant 22) 1-Chloro-1,1-difluoroethane (Refrigerant 142b): Chloroethane (Refrigerant 160): Chloromethane (Refrigerant 40): Chloropentane: 1,2-Chloropentafluoroethane (Refrigerant 115): Chloroprene (2-Chloro-1,3-butadiene): 1-Chloropropane: 2-Chloropropane: m-Chlorotoluene: o-Chlorotoluene: Chlorotrifluoroethylene: Chlorotrifluoromethane (see Refrigerant 13) Chromium-molybdenum steels, Chudnovsky, Y, Chugging flow (gas-liquid), in shell-and-tube heat exchangers, Chung et al method, for viscosity of low pressure gases, Church and Prausnitz methods: Churchill, S W, Churchill and Chu correlations for free convective heat transfer: Churn flow, regions of occurrence of, Circles, radiative heat transfer shape factors between parallel coaxial, Circular girth flanges, design according to ASME VIII code, Circulating fluidized beds, Circulation, modes of in free convection: in enclosures heated from below, CISE correlations for void fractions, Clausius-Clapeyron relationship: Cleaning: Climbing film evaporator, Closed circuit cooling towers, Coalescence of bubbles in fluidized beds, Coatings for corrosion protection Cocurrent flow: Codes, mechanical design: Cogeneration Colburn and Drew method for binary vapor condensation, Colburn and Hougen method for condensation in presence of noncondensable gases Colburn equation for single-phase heat transfer outside tube banks, Colburn j factor: Colebrook-White equation for friction factor in rough circular pipe, Coles, law of the wake, Collier, J G, Combined free and forced convection heat transfer: Combined heat and mass transfer, Combining flow, loss coefficients in, Combustion model for furnaces, Compact heat exchangers (see Plate fin heat exchangers) Compartment dryers, Composite curves, in the pinch analysis method for heat exchanger network analysis: Compressed liquids, density of: Compressible flow: Compression, exergy analysis of Compressive stress, in heat exchanger tubes, Computer-aided design, of evaporators, Computer program for Monte Carlo calculations of radiative heat transfer, Computer simulation, of fouling, Computer software for mechanical design, Concentration, choice of evaporator type for, Concentric spheres, free convective heat transfer in, Concurrency corrections in plate heat exchangers, Condensation: Concrete, lightweight, submerged combustion system for, Condensation curves: Condenser/preheater tubes, in multistage flash evaporation, Condensers: Conduction, heat: Conductors, thermal conductivity of, Cones, under internal pressure, EN13445 guidelines for, Cones, vertical: Conical shells, mechanical design of: Conjugate radiation interactions Connors equation for fluid elastic instability, Conservation equations: Constantinon and Gani method, for estimating normal boiling point, Contact angle, Contact resistance: Continuity equation: Continuum model, for fluids, Continuum theories, for non-Newtonian fluids, Contraction, sudden, pressure drop in: Control: Control volume method, in finite difference solutions for conduction, Convection, interaction of radiation with, Convection effects, on heat transfer in kettle reboilers, Convective heat transfer, single-phase: Conversion factors: Conveyor, gravity: Cooling curves, in condensation, Cooling towers: Cooling water fouling, Cooper correlation, for nucleate boiling, Cooper, Anthony, Copper, thermal and mechanical properties, Copper alloys, Correlation, general nature of, Corresponding states principle Corrosion: Corrugation design, for plate heat exchangers Costing of heat exchangers: Countercurrent flow: Coupled thermal fields, in transient conduction, Cowie, R C, Crank-Nicolson differencing scheme, in finite difference method, Creeping flow, in combined free and forced convection around immersed bodies, m-Cresol: o-Cresol: p-Cresol: Crevice corrosion, in stainless steels, Critical constants Critical density, of commonly used fluids, Critical flow, in gas-liquid systems, Critical heat flux: Critical pressure: Critical Rayleigh number, in free convection, Critical temperature: Critical velocity, in stratification in bends and horizontal tubes, Critical volume (see also Critical density) Cross counterflow heat exchangers, Crossflow: Crude oil, fouling of heat exchangers: Cryogenic plant, entropy generation in, Crystallization Crystallization fouling, Curved ducts: Cut-and-twist factor, in enhancement of heat transfer in double pipe heat exchangers, C-value method for heat exchanger costing, Cycling, of expansion bellows, Cyclobutane: Cyclohexane: Cyclohexanol: Cyclohexene: Cyclopentane: Cyclopentene: Cyclopropane: Cylinders: Cylindrical contacts, thermal contact resistance in, Cylindrical coordinates, finite difference equations for conduction in, Cylindrical shell, analytical basis of code rules for,

Index

HEDH
A B C
Cabin heater, Caetano, EF Calcium carbonate, fouling of heat exchangers by, Calcium sulphate, fouling of heat exchangers by, CALFLO, heat transfer media, Calorically perfect gas, CANDU Reactor, fouling problems in, Carbon dioxide: Carbon disulfide: Carbon monoxide: Carbon steel: Carbon-manganese steels Carbon-molybdenum steels, Carbon tetrachloride: Carbonyl sulfide: Carboxylic acids: Carnot cycle in refrigeration, Carnot factor, Carreau fluid (non-Newtonian), Carryover of solids in fluidized beds, Cashman, B L, Cast iron, thermal and mechanical properties, Cavitation as source of damage in heat exchangers, Cell method, for heat exchanger effectiveness, Cement kilns, CEN code for pressure vessels, Centrifugal dryer, Ceramics Certification of heat exchangers, Chan, S H, Channel emissivity, Chapman-Rubescin formula for viscosity variation with temperature, Chemical exergy, Chemical formulas of commonly used fluids Chemical industry, fouling of heat exchangers in, Chemical reactions, exergy analysis of, Chemical reaction fouling, Chen correlation for forced convective boiling, Chen method, for enthalpy of vaporisation, Chenoweth, J M, Chevron troughs as corrugation design in plate heat exchangers, Chillers, construction features of, Chilton-Colburn analogy, Chisholm, D Chisholm correlations: Chlorine: Chloroacetic acid: Chlorobenzene: Chlorobutane: Chlorodifluoromethane (see Refrigerant 22) 1-Chloro-1,1-difluoroethane (Refrigerant 142b): Chloroethane (Refrigerant 160): Chloromethane (Refrigerant 40): Chloropentane: 1,2-Chloropentafluoroethane (Refrigerant 115): Chloroprene (2-Chloro-1,3-butadiene): 1-Chloropropane: 2-Chloropropane: m-Chlorotoluene: o-Chlorotoluene: Chlorotrifluoroethylene: Chlorotrifluoromethane (see Refrigerant 13) Chromium-molybdenum steels, Chudnovsky, Y, Chugging flow (gas-liquid), in shell-and-tube heat exchangers, Chung et al method, for viscosity of low pressure gases, Church and Prausnitz methods: Churchill, S W, Churchill and Chu correlations for free convective heat transfer: Churn flow, regions of occurrence of, Circles, radiative heat transfer shape factors between parallel coaxial, Circular girth flanges, design according to ASME VIII code, Circulating fluidized beds, Circulation, modes of in free convection: in enclosures heated from below, CISE correlations for void fractions, Clausius-Clapeyron relationship: Cleaning: Climbing film evaporator, Closed circuit cooling towers, Coalescence of bubbles in fluidized beds, Coatings for corrosion protection Cocurrent flow: Codes, mechanical design: Cogeneration Colburn and Drew method for binary vapor condensation, Colburn and Hougen method for condensation in presence of noncondensable gases Colburn equation for single-phase heat transfer outside tube banks, Colburn j factor: Colebrook-White equation for friction factor in rough circular pipe, Coles, law of the wake, Collier, J G, Combined free and forced convection heat transfer: Combined heat and mass transfer, Combining flow, loss coefficients in, Combustion model for furnaces, Compact heat exchangers (see Plate fin heat exchangers) Compartment dryers, Composite curves, in the pinch analysis method for heat exchanger network analysis: Compressed liquids, density of: Compressible flow: Compression, exergy analysis of Compressive stress, in heat exchanger tubes, Computer-aided design, of evaporators, Computer program for Monte Carlo calculations of radiative heat transfer, Computer simulation, of fouling, Computer software for mechanical design, Concentration, choice of evaporator type for, Concentric spheres, free convective heat transfer in, Concurrency corrections in plate heat exchangers, Condensation: Concrete, lightweight, submerged combustion system for, Condensation curves: Condenser/preheater tubes, in multistage flash evaporation, Condensers: Conduction, heat: Conductors, thermal conductivity of, Cones, under internal pressure, EN13445 guidelines for, Cones, vertical: Conical shells, mechanical design of: Conjugate radiation interactions Connors equation for fluid elastic instability, Conservation equations: Constantinon and Gani method, for estimating normal boiling point, Contact angle, Contact resistance: Continuity equation: Continuum model, for fluids, Continuum theories, for non-Newtonian fluids, Contraction, sudden, pressure drop in: Control: Control volume method, in finite difference solutions for conduction, Convection, interaction of radiation with, Convection effects, on heat transfer in kettle reboilers, Convective heat transfer, single-phase: Conversion factors: Conveyor, gravity: Cooling curves, in condensation, Cooling towers: Cooling water fouling, Cooper correlation, for nucleate boiling, Cooper, Anthony, Copper, thermal and mechanical properties, Copper alloys, Correlation, general nature of, Corresponding states principle Corrosion: Corrugation design, for plate heat exchangers Costing of heat exchangers: Countercurrent flow: Coupled thermal fields, in transient conduction, Cowie, R C, Crank-Nicolson differencing scheme, in finite difference method, Creeping flow, in combined free and forced convection around immersed bodies, m-Cresol: o-Cresol: p-Cresol: Crevice corrosion, in stainless steels, Critical constants Critical density, of commonly used fluids, Critical flow, in gas-liquid systems, Critical heat flux: Critical pressure: Critical Rayleigh number, in free convection, Critical temperature: Critical velocity, in stratification in bends and horizontal tubes, Critical volume (see also Critical density) Cross counterflow heat exchangers, Crossflow: Crude oil, fouling of heat exchangers: Cryogenic plant, entropy generation in, Crystallization Crystallization fouling, Curved ducts: Cut-and-twist factor, in enhancement of heat transfer in double pipe heat exchangers, C-value method for heat exchanger costing, Cycling, of expansion bellows, Cyclobutane: Cyclohexane: Cyclohexanol: Cyclohexene: Cyclopentane: Cyclopentene: Cyclopropane: Cylinders: Cylindrical contacts, thermal contact resistance in, Cylindrical coordinates, finite difference equations for conduction in, Cylindrical shell, analytical basis of code rules for,
D E F G H I J K L M N O P Q R S T U V W X Y Z

Introduction

DOI 10.1615/hedhme.a.000260

3.4.1 Introduction

As the name implies, a condenser is a heat exchanger used to convert vapour into liquid. The vapour may be a single component or a mixture. In either case, if it is possible to condense all the vapour, the exchanger is referred to as a Total Condenser. If, however, non-condensable gas is mixed with the vapour, it is not possible to condense all the vapour because the non-condensable leaving the condenser will be saturated with vapour. Hence, such an exchangers is called a Partial Condenser.

So called total condensers will almost always have trace non-condensable present but these can often be ignored in the thermal design except for ensuring that provision is made to prevent accumulation of non-condensable during long-term operation Such removal is normally by venting although it may rarely be possible to rely on the non-condensable being desolved in the condensate.

This section of HEDH is concerned with exchangers whose primary purpose is condensation. There are many cases, however, where the condensation is only there to supply heat needed for another stream which may be single-phase or vaporising. The vapour undergoing condensation in such cases is normally service steam. While the general principles described here will still apply to such exchangers, the design will be mainly dictated by the stream being heated or vaporised. Other sections of this Handbook should therefore be consulted in these cases. These are Section 3.3 for single-phase heating, 3.5 for evaporators and 3.6 for reboilers.

In most cases, the condensing stream is separated from the coolant by a solid wall (usually metal) which may be a plate or a tube wall. The term surface condenser can be used to describe this arrangement although this name tends to be confined to tubular condensers used in the power industry The alternative, is a direct contact condenser where the coolant is sprayed or poured directly into the vapour. Clearly, this arrangement is only possible if the condensate and coolant may remain mixed or if they are immiscible to enable separation. Direct contact condensers are discussed in Section 3.19.

This section of HEDH is concerned mainly with shell-and-tube condensers. It should be noted, however, that other exchanger types may be used as condensers. These are listed below together with the section of this Handbook where more information may be found (where no section number is given, there is nothing yet in the Handbook).

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here