Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:

Index

HEDH
A B C D E F G H
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:
I J K L M N O P Q R S T U V W X Y Z

Thermal Design

DOI 10.1615/hedhme.a.000278

3.6.2 Thermal design

A. Kettle, internal, and horizontal thermosiphon reboilers

Kettle, internal, and horizontal thermosiphon reboilers are similar in that heat is transferred to a vaporizing two-phase mixture flowing across a tube bundle. Nucleate and convective boiling mechanisms both take part in the boiling process. For kettle reboilers, convective circulation takes place in an enlarged shell with mostly vapor going overhead. For the thermosiphon, a two-phase mixture is discharged from the reboiler and convective circulation involves the external piping and liquid reservoir. Nevertheless, the heat transfer processes are essentially the same in both types, so thermal design is covered in the same section. The following elements are important.

(a) Single-tube nucleate boiling

The nucleate boiling mechanism has considerable influence on the behavior of kettle and horizontal thermosiphon reboilers, so a correlation for nucleate boiling on single tubes is a necessary (but not sufficient) component of the design calculations For a more detailed discussion of nucleate boiling theory, refer to Section 2.7.2.

The nucleate boiling heat transfer coefficient can be described by either of the two following forms, both of which may be convenient in different types of calculations:

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here