Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:

Index

HEDH
A B C D E F G H
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:
I J K L M N O P Q R S T U V W X Y Z

Start-Up and Control

DOI 10.1615/hedhme.a.000316

3.10.7 Start-up and control

It is important to appreciate that it may not be possible to attain the design point simply by heating the evaporator or cooling the condenser; the heat pipe may not "start."

Cotter (1967) uses the terms "uniform start-up" and "front start-up". In uniform start-up the temperature along the heat pipe is practically uniform during the start-up process; this is obtained where initially the vapor density is not too low.

In frontal start-up there is a considerable temperature variation along the pipe, and it is only gradually that a relatively uniform axial temperature variation is obtained.

When the density of the vapor is initially very low, it is possible for some flow to occur. This will start first at the outlet from the evaporator, or at the outlet from the isothermal length. Cotter's treatment has now been found to be inadequate in the light of work with lithium heat pipes carried out by Sockol and Forman (1970). They present the equations for predicting the rate at which the sonic front will move along the heat pipe to the condenser.

Downstream of the sonic front, supersonic flow may occur, followed by a shock wave.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here