Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),

Index

HEDH
A B C D E
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),
F G H I J K L M N O P Q R S T U V W X Y Z

Type of Heat Exchanger and Fouling Potential

DOI 10.1615/hedhme.a.000363

3.17 FOULING IN HEAT EXCHANGERS
3.17.7 Type of heat exchanger and fouling potential

A. Shell and Tube

(by G. F. Hays)

(a) Tube-side Flow

Fluids on the tube-side of a shell and tube heat exchanger have well defined flow paths and uniform velocity, neglecting the end effects at the entrance and exit of the tubes. The tube-side is the easier side of the heat exchanger bundle to clean. Thus, fluids, which are more susceptible to fouling, should preferentially be placed on the tube-side. Traditionally, the fluid, which is at a substantially higher pressure, has been placed on the tube-side regardless of fouling considerations. This is particularly true for gas-liquid coolers, such as compressor intercoolers and aftercoolers. That practice minimizes the initial cost of a new heat exchanger, but may significantly increase the operating cost due to fouling. Compressor intercoolers and aftercoolers are prime examples of this cost differential. Thus, the total cost of ownership is significantly higher when the higher fouling fluid is on the shell-side.

Cooling water is particularly susceptible to fouling from sources, many of which the designer normally cannot predict. Foulant sources may include water chemistry, airborne contamination, process leaks, biomass and suspended matter. Once-through cooling waters are susceptible to macro fouling; such as zebra muscles and debris from the water source. Open recirculating cooling water is most susceptible to micro fouling. Thus, from a fouling standpoint, cooling water should be placed on the tube-side.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here