Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),

Index

HEDH
A B C D E
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),
F G H I J K L M N O P Q R S T U V W X Y Z

Definition and Application

DOI 10.1615/hedhme.a.000383

3.22.1 Definition and applications

A. Nature of flash evaporation

When a body of liquid, initially at saturation or slightly subcooled state, is flowing at high speed through a conduit or when a vessel containing saturated liquid is subjected to sudden depressurization so that the liquid pressure becomes lower than the saturation pressure corresponding to the local temperature of the liquid, a transient process termed flashing occurs. In this process, the liquid becomes superheated and starts to boil and a portion of the liquid flashes off to the vapor phase. Accordingly, the sensible heat of the liquid is changed to latent heat. Thereby the liquid cools itself and approaches a new thermodynamic equilibrium. The process is characterized by high deviation from both the thermal and mechanical equilibrium between the two phases. The vapor formation in the flashing process may take place in two ways. It may occur at the free surface of the metastable liquid and/or at freshly generated surfaces in the form of bubbles within the bulk of the liquid. The flashing process may start due to four reasons: wall boiling, release of dissolved gases, presence of impurities, and statistical fluctuations in the metastable liquid El-Dessouky (1995).

The flashing process differs from boiling in the following ways:

  • Boiling takes place on heated surface, while flashing occurs in the liquid bulk.
  • Boiling of pure liquids is isothermal, while flashing is associated with decrease in the liquid bulk temperature.
  • The extent of flashing depends on fluid stagnation conditions, the location of flashing inception within the container or conduit, fluid properties, system geometry, and rate of depressurization. On the other hand, extent of boiling depends on the temperature difference between the hot surface and the liquid, the geometry of the heating surface, buoyancy forces, and surface tension between the liquid and vapor.
  • Flashing is an adiabatic process similar to evaporative cooling, where sensible heat is changed into latent heat.
  • Main advantage of liquid flashing is that evaporation occurs within the liquid body not on a heat transfer surface, which may lead to local increase in salt concentration and eventual formation of scale.
  • Flashing is limited to low temperature applications.
  • Both boiling and flashing are associated with high turbulence and non-equilibrium.

B. Industrial Applications

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here