Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F-correction method: F-factor charts and equations for various heat exchanger configurations, F-factor method: F-type shells: Fabrication: Failure modes of heat exchangers, Falling films, direct contact heat transfer in, Falling film evaporator: Fanno flow, Fans in air-cooled heat exchangers: Fatigue as failure mode of a heat exchanger Fatigue life, of expansion bellows, Fawcett, R Fedor's method, for critical temperature, Fenghour, A Ferritic stainless steels, as material of construction, Fick's law for diffusion, Film boiling: Film model, condenser design by Film temperature, definition of for turbulent flow over flat plate, Films in heat exchangers, Filmwise condensation: Fincotherm, heat transfer medium, Finite-difference equations: Finite difference methods: Finite-element methods: Fins (see also Extended surfaces): Fire-tube boiler, Fired heaters, Fires, room, radiation interaction phenomena in, Firsova, E V, Fixed beds: Fixed tubesheet, shell-and-tube exchangers: Flanges, mechanical design of in heat exchangers, Flash evaporation Flat absorber of thermal radiation, Flat heads: Flat plate: Flat reflector of thermal radiation, Floating head designs for shell-and-tube heat exchangers: Flooded type evaporator, in refrigeration, Flooding phenomena: Flow distribution: Flow-induced vibration, Flow regimes: Flow stream analysis method for segmentally baffled shell and tube heat exchangers, Flue gases, fouling by, Fluid elastic instability as source of flow-induced vibration, Fluid flow, lost work in, Fluid mechanics, Eulerian formulation for, Fluid-to-particle heat transfer in fluidized beds, Fluidized bed dryer: Fluidized bed gravity conveyors, Fluidized beds: Fluids: Fluorine: Fluorobenzene: Fluoroethane (Refrigerant 161): Fluoromethane (Refrigerant 41): Fluted tubes: Flux method, for modeling radiation in furnaces, Flux relationships in heat exchangers, Fogging in condensation Food processing, fouling of heat exchangers in, Forced flow reboilers: Formaldehyde: Formamide: Formic acid: Forster and Zuber correlation for nucleate boiling, Fouling, Foam systems, heat transfer in, Four phase flows, examples, Fourier law for conduction Fourier number (Fo): Frames for plate heat exchangers, France, guide to national practice for mechanical design, Free convection: Free-fall velocity, of particles, Free-stream turbulence, effect on flow over cylinders, Freeze protection of air-cooled heat exchangers, Freezing, of condensate in condensers Fresnel relations in reflection of radiation, Fretting corrosion, Friction factor: Friction multipliers in gas-liquid flow: Friction velocity, definition, Friedel correlation for frictional pressure gradient in straight channels, Froude number: Fuels, properties of, Fuller, R K, Furan: Furfural: Furnaces: Fusion welding, of tubes into tubesheets in shell-and-tube heat exchangers,

Index

HEDH
A B C D E F
F-correction method: F-factor charts and equations for various heat exchanger configurations, F-factor method: F-type shells: Fabrication: Failure modes of heat exchangers, Falling films, direct contact heat transfer in, Falling film evaporator: Fanno flow, Fans in air-cooled heat exchangers: Fatigue as failure mode of a heat exchanger Fatigue life, of expansion bellows, Fawcett, R Fedor's method, for critical temperature, Fenghour, A Ferritic stainless steels, as material of construction, Fick's law for diffusion, Film boiling: Film model, condenser design by Film temperature, definition of for turbulent flow over flat plate, Films in heat exchangers, Filmwise condensation: Fincotherm, heat transfer medium, Finite-difference equations: Finite difference methods: Finite-element methods: Fins (see also Extended surfaces): Fire-tube boiler, Fired heaters, Fires, room, radiation interaction phenomena in, Firsova, E V, Fixed beds: Fixed tubesheet, shell-and-tube exchangers: Flanges, mechanical design of in heat exchangers, Flash evaporation Flat absorber of thermal radiation, Flat heads: Flat plate: Flat reflector of thermal radiation, Floating head designs for shell-and-tube heat exchangers: Flooded type evaporator, in refrigeration, Flooding phenomena: Flow distribution: Flow-induced vibration, Flow regimes: Flow stream analysis method for segmentally baffled shell and tube heat exchangers, Flue gases, fouling by, Fluid elastic instability as source of flow-induced vibration, Fluid flow, lost work in, Fluid mechanics, Eulerian formulation for, Fluid-to-particle heat transfer in fluidized beds, Fluidized bed dryer: Fluidized bed gravity conveyors, Fluidized beds: Fluids: Fluorine: Fluorobenzene: Fluoroethane (Refrigerant 161): Fluoromethane (Refrigerant 41): Fluted tubes: Flux method, for modeling radiation in furnaces, Flux relationships in heat exchangers, Fogging in condensation Food processing, fouling of heat exchangers in, Forced flow reboilers: Formaldehyde: Formamide: Formic acid: Forster and Zuber correlation for nucleate boiling, Fouling, Foam systems, heat transfer in, Four phase flows, examples, Fourier law for conduction Fourier number (Fo): Frames for plate heat exchangers, France, guide to national practice for mechanical design, Free convection: Free-fall velocity, of particles, Free-stream turbulence, effect on flow over cylinders, Freeze protection of air-cooled heat exchangers, Freezing, of condensate in condensers Fresnel relations in reflection of radiation, Fretting corrosion, Friction factor: Friction multipliers in gas-liquid flow: Friction velocity, definition, Friedel correlation for frictional pressure gradient in straight channels, Froude number: Fuels, properties of, Fuller, R K, Furan: Furfural: Furnaces: Fusion welding, of tubes into tubesheets in shell-and-tube heat exchangers,
G H I J K L M N O P Q R S T U V W X Y Z

Definition and Application

DOI 10.1615/hedhme.a.000383

3.22.1 Definition and applications

A. Nature of flash evaporation

When a body of liquid, initially at saturation or slightly subcooled state, is flowing at high speed through a conduit or when a vessel containing saturated liquid is subjected to sudden depressurization so that the liquid pressure becomes lower than the saturation pressure corresponding to the local temperature of the liquid, a transient process termed flashing occurs. In this process, the liquid becomes superheated and starts to boil and a portion of the liquid flashes off to the vapor phase. Accordingly, the sensible heat of the liquid is changed to latent heat. Thereby the liquid cools itself and approaches a new thermodynamic equilibrium. The process is characterized by high deviation from both the thermal and mechanical equilibrium between the two phases. The vapor formation in the flashing process may take place in two ways. It may occur at the free surface of the metastable liquid and/or at freshly generated surfaces in the form of bubbles within the bulk of the liquid. The flashing process may start due to four reasons: wall boiling, release of dissolved gases, presence of impurities, and statistical fluctuations in the metastable liquid El-Dessouky (1995).

The flashing process differs from boiling in the following ways:

  • Boiling takes place on heated surface, while flashing occurs in the liquid bulk.
  • Boiling of pure liquids is isothermal, while flashing is associated with decrease in the liquid bulk temperature.
  • The extent of flashing depends on fluid stagnation conditions, the location of flashing inception within the container or conduit, fluid properties, system geometry, and rate of depressurization. On the other hand, extent of boiling depends on the temperature difference between the hot surface and the liquid, the geometry of the heating surface, buoyancy forces, and surface tension between the liquid and vapor.
  • Flashing is an adiabatic process similar to evaporative cooling, where sensible heat is changed into latent heat.
  • Main advantage of liquid flashing is that evaporation occurs within the liquid body not on a heat transfer surface, which may lead to local increase in salt concentration and eventual formation of scale.
  • Flashing is limited to low temperature applications.
  • Both boiling and flashing are associated with high turbulence and non-equilibrium.

B. Industrial Applications

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here