Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Taborek, J, xlv-lvi Taitel and Dukler flow regime map, for horizontal and inclined gas- liquid flows, Tamura et al correlation, for surface tension of mixtures, Taylor Forge method, for mechanical design of flanges, comparison with EN13445 method, Taylor series expansion, Teflon, use in heat transfer enhancement: TEMA (Tubular Exchanger Manufacturers Association): Temperature distribution: Tenders for heat exchangers, Terminal free fall velocity, in fluidization, Testing and inspection of heat exchangers: Tetrabromomethane: 1,1,2,2-Tetrachloroethane: Tetrachloroethylene: Tetradecane: Tetradecene: Tetrachlorodifluoroethane (Refrigerant 112): 1,1,1,2-Tetrafluoroethane (Refrigerant R134a): Tetrafluoromethane (Refrigerant 14): Tetrahydrofuran: 1,2,3,4-Tetramethylbenzene: 1,2,3,5-Tetramethylbenzene: 1,2,4,5-Tetramethylbenzene: Thermal conductivity: Thermal contact conductance (TCC), Thermal contact resistance (TCR), Thermal design, constructional features affecting, in shell-and-tube heat exchangers Thermal diffusivity: Thermal expansion coefficient: Thermal leakage in F-type shell-and-tube heat exchangers, Thermal mixing in plate heat exchangers, Thermal stress: Thermocal, heat transfer media, Thermodynamic cycles in refrigeration, Thermodynamic properties: Thermodynamic surface in radiative heat transfer, Thermoexel surface, for enhancement of boiling, Thermofluids, heat transfer medium, Thermosiphon Theta-NTU method: Thickness of boundary layers (displacement, momentum, energy, density, temperature), Thin-wall-type expansion bellows, Thiophene: Thome, J R Three-phase flows: Tie rods in shell-and-tube heat exchangers, Tinker method for shell-side heat transfer in shell-and-tube heat exchangers, Titanium and titanium alloys, T-junctions, loss coefficients in, Tolerances Toluene: m-Toluidine: Tong F-factor method, for critical heat flux with nonuniform heating, Tooth, A S, Total emissivity in gases, Transcendental equations in transient conduction, Transient behavior: Transition boiling: Transition flow, heat transfer in free convective flow over vertical surfaces in, Transitional flow, in combined free and forced convection, Transmission of thermal radiation in solids: Transmissivity of solids: Transport properties: Transverse flow, combined free and forced convection in, Treated surfaces, for augmentation of heat transfer, Triangular duct: Triangular fins, in plate fin exchangers, Triangular relationship, in annular gas-liquid flow, Tribromomethane: 1,1,1-Trichloroethane (Refrigerant 140a): Trichloroethylene: Trichlorofluoromethane (Refrigerant 11) Trichloromethane (Chloroform) (Refrigerant 20): 1,1,2-Trichlorotrifluoroethane (Refrigerant 113): Tridecane: Tridecene: Triethylamine: 1,1,1-Trifluoroethane (Refrigerant 143a): Trifluoromethane (Refrigerant 23): Trimethylamine: 1,2,3-Trimethylbenzene: 1,2,4-Trimethylbenzene: 1,3,5-Trimethylbenzene: 2,2,4-Trimethylpentane (Isooctane): Triphenylmethane: Triple interface (gas/solid/liquid), True temperature difference, in double pipe exchangers, Truelove, J S, Tsotsas, E Tube-baffle damage, in heat exchangers, Tube banks, finned: Tube banks, plain: Tube banks, roughened tubes, effect of roughness on Euler number in, Tube bundles: Tube counts, in shell-and-tube heat exchangers: Tube end attachment, in shell-and-tube heat exchangers, Tube inserts, heat exchangers with, Tube-in-plate extended surface configurations, fin efficiency of, Tube plates, in shell-and-tube heat exchangers: Tube rupture in shell-and-tube heat exchangers, Tube-to-tubesheet attachment, in shell-and-tube heat exchangers, Tubes: Tucker, R J, Tunnel dryer, Turbine exhaust condensers: Turbines, lost work in Turbulence: Turbulent boundary layers: Turbulent buffeting, as source of tube vibration, Turbulent energy, integral equation for, Turbulent flow: Turnarounds, in heat exchangers, Turner, C W, Twisted tapes: Twisted tube heat exchangers, Twisted tubes Two-equation models, for turbulent boundary layers, Two-phase loop with capillary pump, Two-phase flows:

Index

HEDH
A B C D E F G H I J K L M N O P Q R S T
Taborek, J, xlv-lvi Taitel and Dukler flow regime map, for horizontal and inclined gas- liquid flows, Tamura et al correlation, for surface tension of mixtures, Taylor Forge method, for mechanical design of flanges, comparison with EN13445 method, Taylor series expansion, Teflon, use in heat transfer enhancement: TEMA (Tubular Exchanger Manufacturers Association): Temperature distribution: Tenders for heat exchangers, Terminal free fall velocity, in fluidization, Testing and inspection of heat exchangers: Tetrabromomethane: 1,1,2,2-Tetrachloroethane: Tetrachloroethylene: Tetradecane: Tetradecene: Tetrachlorodifluoroethane (Refrigerant 112): 1,1,1,2-Tetrafluoroethane (Refrigerant R134a): Tetrafluoromethane (Refrigerant 14): Tetrahydrofuran: 1,2,3,4-Tetramethylbenzene: 1,2,3,5-Tetramethylbenzene: 1,2,4,5-Tetramethylbenzene: Thermal conductivity: Thermal contact conductance (TCC), Thermal contact resistance (TCR), Thermal design, constructional features affecting, in shell-and-tube heat exchangers Thermal diffusivity: Thermal expansion coefficient: Thermal leakage in F-type shell-and-tube heat exchangers, Thermal mixing in plate heat exchangers, Thermal stress: Thermocal, heat transfer media, Thermodynamic cycles in refrigeration, Thermodynamic properties: Thermodynamic surface in radiative heat transfer, Thermoexel surface, for enhancement of boiling, Thermofluids, heat transfer medium, Thermosiphon Theta-NTU method: Thickness of boundary layers (displacement, momentum, energy, density, temperature), Thin-wall-type expansion bellows, Thiophene: Thome, J R Three-phase flows: Tie rods in shell-and-tube heat exchangers, Tinker method for shell-side heat transfer in shell-and-tube heat exchangers, Titanium and titanium alloys, T-junctions, loss coefficients in, Tolerances Toluene: m-Toluidine: Tong F-factor method, for critical heat flux with nonuniform heating, Tooth, A S, Total emissivity in gases, Transcendental equations in transient conduction, Transient behavior: Transition boiling: Transition flow, heat transfer in free convective flow over vertical surfaces in, Transitional flow, in combined free and forced convection, Transmission of thermal radiation in solids: Transmissivity of solids: Transport properties: Transverse flow, combined free and forced convection in, Treated surfaces, for augmentation of heat transfer, Triangular duct: Triangular fins, in plate fin exchangers, Triangular relationship, in annular gas-liquid flow, Tribromomethane: 1,1,1-Trichloroethane (Refrigerant 140a): Trichloroethylene: Trichlorofluoromethane (Refrigerant 11) Trichloromethane (Chloroform) (Refrigerant 20): 1,1,2-Trichlorotrifluoroethane (Refrigerant 113): Tridecane: Tridecene: Triethylamine: 1,1,1-Trifluoroethane (Refrigerant 143a): Trifluoromethane (Refrigerant 23): Trimethylamine: 1,2,3-Trimethylbenzene: 1,2,4-Trimethylbenzene: 1,3,5-Trimethylbenzene: 2,2,4-Trimethylpentane (Isooctane): Triphenylmethane: Triple interface (gas/solid/liquid), True temperature difference, in double pipe exchangers, Truelove, J S, Tsotsas, E Tube-baffle damage, in heat exchangers, Tube banks, finned: Tube banks, plain: Tube banks, roughened tubes, effect of roughness on Euler number in, Tube bundles: Tube counts, in shell-and-tube heat exchangers: Tube end attachment, in shell-and-tube heat exchangers, Tube inserts, heat exchangers with, Tube-in-plate extended surface configurations, fin efficiency of, Tube plates, in shell-and-tube heat exchangers: Tube rupture in shell-and-tube heat exchangers, Tube-to-tubesheet attachment, in shell-and-tube heat exchangers, Tubes: Tucker, R J, Tunnel dryer, Turbine exhaust condensers: Turbines, lost work in Turbulence: Turbulent boundary layers: Turbulent buffeting, as source of tube vibration, Turbulent energy, integral equation for, Turbulent flow: Turnarounds, in heat exchangers, Turner, C W, Twisted tapes: Twisted tube heat exchangers, Twisted tubes Two-equation models, for turbulent boundary layers, Two-phase loop with capillary pump, Two-phase flows:
U V W X Y Z

Thermodynamic cycles

DOI 10.1615/hedhme.a.000398

3.26.2 Thermodynamic cycles

In addition to identifying the natural direction of energy transfer processes, the Second Law of Thermodynamics states that some forms of energy have higher quality than others. Whereas there are no limits for conversion of high-quality energy (e.g. work) into low-quality energy (e.g. heat), the Second Law imposes theoretical limitations for the conversion of heat into work and for the transfer of heat from a low temperature thermal energy reservoir (source) to a high temperature thermal reservoir (sink).

A heat engine, as depicted in Figure 1(a), is a device that operates in a cycle and converts heat into work. The rate of heat input from the high temperature reservoir is H  and part of this heat is converted into work, net. For a system undergoing a cycle, the change in internal energy is zero and the rate of heat rejection to the low temperature reservoir is H  = Lnet.

Figure 1 A schematic representation of (a) a heat engine and (b) a refrigerator or a heat pump

The ratio of the net work output to the total heat input to the heat engine represents the efficiency with which it converts heat into work. The thermal efficiency is defined as,

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here