Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Taborek, J, xlv-lvi Taitel and Dukler flow regime map, for horizontal and inclined gas- liquid flows, Tamura et al correlation, for surface tension of mixtures, Taylor Forge method, for mechanical design of flanges, comparison with EN13445 method, Taylor series expansion, Teflon, use in heat transfer enhancement: TEMA (Tubular Exchanger Manufacturers Association): Temperature distribution: Tenders for heat exchangers, Terminal free fall velocity, in fluidization, Testing and inspection of heat exchangers: Tetrabromomethane: 1,1,2,2-Tetrachloroethane: Tetrachloroethylene: Tetradecane: Tetradecene: Tetrachlorodifluoroethane (Refrigerant 112): 1,1,1,2-Tetrafluoroethane (Refrigerant R134a): Tetrafluoromethane (Refrigerant 14): Tetrahydrofuran: 1,2,3,4-Tetramethylbenzene: 1,2,3,5-Tetramethylbenzene: 1,2,4,5-Tetramethylbenzene: Thermal conductivity: Thermal contact conductance (TCC), Thermal contact resistance (TCR), Thermal design, constructional features affecting, in shell-and-tube heat exchangers Thermal diffusivity: Thermal expansion coefficient: Thermal leakage in F-type shell-and-tube heat exchangers, Thermal mixing in plate heat exchangers, Thermal stress: Thermocal, heat transfer media, Thermodynamic cycles in refrigeration, Thermodynamic properties: Thermodynamic surface in radiative heat transfer, Thermoexel surface, for enhancement of boiling, Thermofluids, heat transfer medium, Thermosiphon Theta-NTU method: Thickness of boundary layers (displacement, momentum, energy, density, temperature), Thin-wall-type expansion bellows, Thiophene: Thome, J R Three-phase flows: Tie rods in shell-and-tube heat exchangers, Tinker method for shell-side heat transfer in shell-and-tube heat exchangers, Titanium and titanium alloys, T-junctions, loss coefficients in, Tolerances Toluene: m-Toluidine: Tong F-factor method, for critical heat flux with nonuniform heating, Tooth, A S, Total emissivity in gases, Transcendental equations in transient conduction, Transient behavior: Transition boiling: Transition flow, heat transfer in free convective flow over vertical surfaces in, Transitional flow, in combined free and forced convection, Transmission of thermal radiation in solids: Transmissivity of solids: Transport properties: Transverse flow, combined free and forced convection in, Treated surfaces, for augmentation of heat transfer, Triangular duct: Triangular fins, in plate fin exchangers, Triangular relationship, in annular gas-liquid flow, Tribromomethane: 1,1,1-Trichloroethane (Refrigerant 140a): Trichloroethylene: Trichlorofluoromethane (Refrigerant 11) Trichloromethane (Chloroform) (Refrigerant 20): 1,1,2-Trichlorotrifluoroethane (Refrigerant 113): Tridecane: Tridecene: Triethylamine: 1,1,1-Trifluoroethane (Refrigerant 143a): Trifluoromethane (Refrigerant 23): Trimethylamine: 1,2,3-Trimethylbenzene: 1,2,4-Trimethylbenzene: 1,3,5-Trimethylbenzene: 2,2,4-Trimethylpentane (Isooctane): Triphenylmethane: Triple interface (gas/solid/liquid), True temperature difference, in double pipe exchangers, Truelove, J S, Tsotsas, E Tube-baffle damage, in heat exchangers, Tube banks, finned: Tube banks, plain: Tube banks, roughened tubes, effect of roughness on Euler number in, Tube bundles: Tube counts, in shell-and-tube heat exchangers: Tube end attachment, in shell-and-tube heat exchangers, Tube inserts, heat exchangers with, Tube-in-plate extended surface configurations, fin efficiency of, Tube plates, in shell-and-tube heat exchangers: Tube rupture in shell-and-tube heat exchangers, Tube-to-tubesheet attachment, in shell-and-tube heat exchangers, Tubes: Tucker, R J, Tunnel dryer, Turbine exhaust condensers: Turbines, lost work in Turbulence: Turbulent boundary layers: Turbulent buffeting, as source of tube vibration, Turbulent energy, integral equation for, Turbulent flow: Turnarounds, in heat exchangers, Turner, C W, Twisted tapes: Twisted tube heat exchangers, Twisted tubes Two-equation models, for turbulent boundary layers, Two-phase loop with capillary pump, Two-phase flows:

Index

HEDH
A B C D E F G H I J K L M N O P Q R S T
Taborek, J, xlv-lvi Taitel and Dukler flow regime map, for horizontal and inclined gas- liquid flows, Tamura et al correlation, for surface tension of mixtures, Taylor Forge method, for mechanical design of flanges, comparison with EN13445 method, Taylor series expansion, Teflon, use in heat transfer enhancement: TEMA (Tubular Exchanger Manufacturers Association): Temperature distribution: Tenders for heat exchangers, Terminal free fall velocity, in fluidization, Testing and inspection of heat exchangers: Tetrabromomethane: 1,1,2,2-Tetrachloroethane: Tetrachloroethylene: Tetradecane: Tetradecene: Tetrachlorodifluoroethane (Refrigerant 112): 1,1,1,2-Tetrafluoroethane (Refrigerant R134a): Tetrafluoromethane (Refrigerant 14): Tetrahydrofuran: 1,2,3,4-Tetramethylbenzene: 1,2,3,5-Tetramethylbenzene: 1,2,4,5-Tetramethylbenzene: Thermal conductivity: Thermal contact conductance (TCC), Thermal contact resistance (TCR), Thermal design, constructional features affecting, in shell-and-tube heat exchangers Thermal diffusivity: Thermal expansion coefficient: Thermal leakage in F-type shell-and-tube heat exchangers, Thermal mixing in plate heat exchangers, Thermal stress: Thermocal, heat transfer media, Thermodynamic cycles in refrigeration, Thermodynamic properties: Thermodynamic surface in radiative heat transfer, Thermoexel surface, for enhancement of boiling, Thermofluids, heat transfer medium, Thermosiphon Theta-NTU method: Thickness of boundary layers (displacement, momentum, energy, density, temperature), Thin-wall-type expansion bellows, Thiophene: Thome, J R Three-phase flows: Tie rods in shell-and-tube heat exchangers, Tinker method for shell-side heat transfer in shell-and-tube heat exchangers, Titanium and titanium alloys, T-junctions, loss coefficients in, Tolerances Toluene: m-Toluidine: Tong F-factor method, for critical heat flux with nonuniform heating, Tooth, A S, Total emissivity in gases, Transcendental equations in transient conduction, Transient behavior: Transition boiling: Transition flow, heat transfer in free convective flow over vertical surfaces in, Transitional flow, in combined free and forced convection, Transmission of thermal radiation in solids: Transmissivity of solids: Transport properties: Transverse flow, combined free and forced convection in, Treated surfaces, for augmentation of heat transfer, Triangular duct: Triangular fins, in plate fin exchangers, Triangular relationship, in annular gas-liquid flow, Tribromomethane: 1,1,1-Trichloroethane (Refrigerant 140a): Trichloroethylene: Trichlorofluoromethane (Refrigerant 11) Trichloromethane (Chloroform) (Refrigerant 20): 1,1,2-Trichlorotrifluoroethane (Refrigerant 113): Tridecane: Tridecene: Triethylamine: 1,1,1-Trifluoroethane (Refrigerant 143a): Trifluoromethane (Refrigerant 23): Trimethylamine: 1,2,3-Trimethylbenzene: 1,2,4-Trimethylbenzene: 1,3,5-Trimethylbenzene: 2,2,4-Trimethylpentane (Isooctane): Triphenylmethane: Triple interface (gas/solid/liquid), True temperature difference, in double pipe exchangers, Truelove, J S, Tsotsas, E Tube-baffle damage, in heat exchangers, Tube banks, finned: Tube banks, plain: Tube banks, roughened tubes, effect of roughness on Euler number in, Tube bundles: Tube counts, in shell-and-tube heat exchangers: Tube end attachment, in shell-and-tube heat exchangers, Tube inserts, heat exchangers with, Tube-in-plate extended surface configurations, fin efficiency of, Tube plates, in shell-and-tube heat exchangers: Tube rupture in shell-and-tube heat exchangers, Tube-to-tubesheet attachment, in shell-and-tube heat exchangers, Tubes: Tucker, R J, Tunnel dryer, Turbine exhaust condensers: Turbines, lost work in Turbulence: Turbulent boundary layers: Turbulent buffeting, as source of tube vibration, Turbulent energy, integral equation for, Turbulent flow: Turnarounds, in heat exchangers, Turner, C W, Twisted tapes: Twisted tube heat exchangers, Twisted tubes Two-equation models, for turbulent boundary layers, Two-phase loop with capillary pump, Two-phase flows:
U V W X Y Z

Mechanical Design Codes

DOI 10.1615/hedhme.a.000418

4.3 SHELL-AND-TUBE DESIGN CODES
4.3.1 Mechanical design codes

A. Introduction

Pressure vessel codes or standards, which cover much of the mechanical design of shell-and-tube heat exchangers, are usually used voluntarily or under the terms of a contract. In some countries they also fulfil statutory or regulatory functions; indeed in several countries the national code is legally enforced, and compliance with the code is mandatory for items supplied to that country, whether built there or imported. Table 1 shows the principal codes covering heat exchanger design, the approving organisations, regulations and other acceptable codes applicable in a range of countries. A more complete list covering 117 countries is given in British Standards Institution (2006).

Table 1 Principal pressure vessel codes

CountryNational codeApproving organizationRegulationsOther acceptable codes
Belgium





Ministère de l’Emploi et du Travail


Arrête Royal of 17 Feb 1980


Any that satisfy legal requirements

Czech Republic


CSN Standards


Český Úřad Bezpečnosti Práce


Act No 22/1997


Subject to negotiation

Denmark







Arbejdstilsynet Direcktoratet



Regulations Order
No 746 of 26/11/87


BS, ASME, Merkblätter. Swedish

France



CODAP 95



DRIRE/APPAVE



JO 1498-I * (1990)
JO 1498-II * (1991)
JO 1498-IV * (1992)





F.R.Germany


A.D.Merkblätter


RUV-TUV


Equipment Safety Law (GSG),
Druckbeh v *




Hungary


MSZ


Allami Energetikai és Energiabiztonság technikai Felugyelet

PV Safety Regulations


BS, Merkblätter, ASME

Italy


ANCC


Istituto Superiore per la Prevenzione
e la Sicurezza del Lavoro

R D 12.5 1927 n 842
D.M.21.11.1971




Japan


JIS B 8249


Ministry of Labour Industrial Safety Division

Code 33 30/9/72





Netherlands

Rules for PVs

Stoomwezen

Steam Act and Decree 1953



Norway


General rules
for PVs

Direktoratet for Arbeidstilsynet


Act of Protection of Workers





Poland

UDT

Urzad Dozoru Technicznego

Act of Parliament 19-11-1987

BS, ASME, TEMA

Russian Federation

GOST standards


Gospromatomnadzor UI


Gosgortechnadzor


By negotiation


Spain


See regulations


Ministry of Industry and Energy


Royal Decree 1244


Any that satisfy legal requirements

Sweden


Swedish PV Code

SAQ Inspection


AFS 1990-15





United Kingdom




BS 5500,
BS 5169



HSE




Factories Act 1961
Pressure Systems and Transportable Gas Containers Regulations

Any that meet legal requirements




United StatesASMEVaries for each stateVaries for each state

In order to ensure the integrity of the equipment and thus public safety, some of the above regulations require as part of the process of allowing a vessel or heat exchanger to be used in the country, that the design and construction are vetted by an independent inspector. The use of approved QA systems or of independent inspections are also embodied into some codes and standards to provide the assurance of compliance with the code and thus the provision of the integrity demanded by the risks associated with certain industrial processes.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here