Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Vacuum equipment, operational problems of, Vacuum operation, of reboilers, Valle, A, Valves: Vaned bends, single-phase flow and pressure drop in, Vapor blanketing, as mechanism of critical heat flux, Vapor injection, effect of on boiling heat transfer in tube bundles, Vapor-liquid disengagement, in kettle reboilers, Vapor-liquid separation, for evaporators, Vapor mixtures, condensation of, Vapor pressure, Vapor recompression, in evaporation, Vaporization, choice of evaporator type for, Vaporizer, double bundle, constructional features, Vapors, saturation properties of, Vapors, properties of superheated, Vasiliev, L, Vassilicos, J C, Velocity defect law: Velocity distribution: Velocity fluctuations, in turbulent pipe flow, Velocity ratio (slip ratio): Venting of condensers Vertical condensers: Vertical cylindrical fired heater, Vertical pipes: Vertical surfaces: Vertical thermosiphon reboilers: Vessels of non-circular cross section, design to ASME VIII code, Vessels of rectangular cross section, EN13445 guidance for, Vetere method, for enthalpy of vaporisation, Vibrated beds, heat transfer to, Vibration: Vinyl acetate: Vinyl benzene: Vinyl chloride: Virial equation: Virk equation for maximum drag reduction, Visco-elastic fluids, flow of, Viscometric functions (non-Newtonian flow), methods of determining, Viscosity: Viscosity number (Vi), Viscous dissipation, influence on heat transfer in non-Newtonian flows, Viscous heat generation, in scraped sauce heat exchangers, Viscous sublayer, in duct flow, Void fraction, Voidage, in fixed beds, definition, Volumetric heat transfer coefficient, Volumetric mass transfer coefficient, von Karman friction factor equation for fully rough surface, von Karman velocity defect law, Vortex flow, in helical coils of rectangular cross section, Vortex flow model, for twisted tube heat exchangers, Vortex shedding:

Index

HEDH
A B C D E F G H I J K L M N O P Q R S T U V
Vacuum equipment, operational problems of, Vacuum operation, of reboilers, Valle, A, Valves: Vaned bends, single-phase flow and pressure drop in, Vapor blanketing, as mechanism of critical heat flux, Vapor injection, effect of on boiling heat transfer in tube bundles, Vapor-liquid disengagement, in kettle reboilers, Vapor-liquid separation, for evaporators, Vapor mixtures, condensation of, Vapor pressure, Vapor recompression, in evaporation, Vaporization, choice of evaporator type for, Vaporizer, double bundle, constructional features, Vapors, saturation properties of, Vapors, properties of superheated, Vasiliev, L, Vassilicos, J C, Velocity defect law: Velocity distribution: Velocity fluctuations, in turbulent pipe flow, Velocity ratio (slip ratio): Venting of condensers Vertical condensers: Vertical cylindrical fired heater, Vertical pipes: Vertical surfaces: Vertical thermosiphon reboilers: Vessels of non-circular cross section, design to ASME VIII code, Vessels of rectangular cross section, EN13445 guidance for, Vetere method, for enthalpy of vaporisation, Vibrated beds, heat transfer to, Vibration: Vinyl acetate: Vinyl benzene: Vinyl chloride: Virial equation: Virk equation for maximum drag reduction, Visco-elastic fluids, flow of, Viscometric functions (non-Newtonian flow), methods of determining, Viscosity: Viscosity number (Vi), Viscous dissipation, influence on heat transfer in non-Newtonian flows, Viscous heat generation, in scraped sauce heat exchangers, Viscous sublayer, in duct flow, Void fraction, Voidage, in fixed beds, definition, Volumetric heat transfer coefficient, Volumetric mass transfer coefficient, von Karman friction factor equation for fully rough surface, von Karman velocity defect law, Vortex flow, in helical coils of rectangular cross section, Vortex flow model, for twisted tube heat exchangers, Vortex shedding:
W X Y Z

Critical Constants of Pure Components

DOI 10.1615/hedhme.a.000498

5.1 PROPERTIES OF PURE FLUIDS
5.1.1 Critical constants of pure components

A. Introduction

It is increasingly the case that engineers have to design and operate plants involving pure fluid substances and mixtures for which the required thermophysical properties are essentially unknown. The direct experimental investigation of such properties would involve undue expense and delay. Accordingly one must have recourse to estimated data. It is the purpose of this series of sections to present critically assessed methods for the estimation of thermophysical properties and to recommend appropriate procedures for their reliable use. The series start with the estimation of the critical properties.

Critical properties of fluids are of greatest importance and are often required in corresponding states correlations to estimate other properties such as heat capacity, enthalpy, density, viscosity and thermal conductivity. For engineering applications and in the absence of experimental data reliable estimates of physical properties are required. We present below estimation techniques for the calculation of the critical constants and the acentric factor of fluids. The acentric factor is an important property which is often used as a third parameter in corresponding states methods. Estimation methods are usually developed in particular units, not always in the recommended SI units. Care is therefore taken to specify the units of interest associated with each estimation technique. The accuracy of each technique is also quoted wherever possible.

B. Critical Temperature

(a) Fedors method

of the compound of interest:

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here