Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Damage, sources of heat exchangers Damkohler number: Damping: Davis and Anderson criterion, for onset of nucleate boiling, Decal, heat transfer medium, Decane: 1-Decanol: 1-Decene: Degradation temperature, of polymers, Demisters, wire mesh, for multistage flash evaporators, Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow, Density: Deposition of droplets in annular flow Deposition in fouling, Desalination plants: Desuperheaters for use in association with evaporators, Developing flow in ducts: Dew-poin corrosion, Diathermanous fluid, 1,1-Dibromoethane: Dibromomethane: 1,2-Dibromotetrafluoroethane (Refrigerant 114B2): Dibutylamine: Dibutyl ether: Dichloroacetic acid: o-Dichlorobenzene: Dichlorodifluoromethane (see Refrigerant 12) 1,1-Dichloroethane (Refrigerant 150a): 1,2-Dichloroethane (Refrigerant 150): 1,1-Dichloroethylene: cis-1,2-Dichloroethylene: trans-1,2-Dichloroethylene: Dichlorofluoromethane (see Refrigerant 21) Dichloromethane (Refrigerant 30): 1,2-Dichlorotetrafluoroethane (Refrigerant 114) 1,2,3-Dichlorotrifluoroethane (Refrigerant 123) Dielectric constant, of water, Diethylamine: n,n-Diethylaniline: Diethylene glycol: Diethyl ether: Diethyl ketone: Diethylsulfide: Differential condensation: Differential formulations for nonisothermal gas radiation, Differential resistance term in heat exchanger design, Differential vector operators in heat conduction, Diffraction models for radiative heat transfer from surfaces, Diffuse surfaces, radiative heat transfer between, Diffuse wall passages, radiative heat transfer in, Diffusers, single-phase flow and pressure drop in, Diffusion, in multi-component condensation, n,n-Diffusion coefficients: 1,1-Difluoroethane (Refrigerant 152a): Difluoromethane (Refrigerant 32): Diiodomethane: Diisobutylamine: Diisopropylamine: Diisopropylether: Dimensional analysis: Dimensionless groups: Dimethylacetylene: Dimethylamine: Dimethylaniline: 2,2-Dimethylbutane: 2,3-Dimethylbutane: 1,1-Dimethylcyclopentane: Dimethylether: Dimethylketone: 2,2-Dimethylpropane (neopentane): Dimethylsulfide: Dimpled surfaces, heat exchangers with, 1,4-Dioxane: Diphenyl: Diphenylamine: Diphenylether: Diphenylmethane: Dipropyl ether: Diisopropyl ether: Dipropyl ketone: Direct contact heat exchangers Direct contact heat transfer, Direct numerical simulation, of turbulence, Dirichlet boundary condition, finite difference method, Dished heads: Discretization in numerical analysis: Disk-and-doughnut baffled heat exchangers, Disks, free convective heat transfer from inclined, Dispersants, for fouling control, Dispersed flow (liquid-liquid), Dissipation of turbulent energy, Distillation: Distribution: Dittus-Boelter equation, for single-phase forced convective heat transfer, Dividing flow, loss coefficients in, Dodecane: 1-Dodecene: Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers, Double-pipe heat exchangers: Double segmental baffled heat exchangers, Downward facing surfaces, free convective heat transfer from, Downward flow in vertical tubes, flow patterns in gas/liquid, Dowtherm A: Dowtherm J: Dowtherms, as heat transfer media, Drag coefficient: Drag force: Drag reduction, Drainage, of condensate, Dreitser, G, Drift flux model for two-phase flows, Drogemuller, P, Droplets: Dropwise condensation Dry wall desuperheating (in condensation), Dryers: Drying loft, Drying rates, prediction of, Dryout: Ducts, single-phase fluid flow and pressure drop in, Duplex stainless steels, Durand correlation for heterogeneous conveyance in solid/liquid flow, Dynamically stable foam, Dyphyl, heat transfer media, Dzyubenko, B,

Index

HEDH
A B C D
Damage, sources of heat exchangers Damkohler number: Damping: Davis and Anderson criterion, for onset of nucleate boiling, Decal, heat transfer medium, Decane: 1-Decanol: 1-Decene: Degradation temperature, of polymers, Demisters, wire mesh, for multistage flash evaporators, Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow, Density: Deposition of droplets in annular flow Deposition in fouling, Desalination plants: Desuperheaters for use in association with evaporators, Developing flow in ducts: Dew-poin corrosion, Diathermanous fluid, 1,1-Dibromoethane: Dibromomethane: 1,2-Dibromotetrafluoroethane (Refrigerant 114B2): Dibutylamine: Dibutyl ether: Dichloroacetic acid: o-Dichlorobenzene: Dichlorodifluoromethane (see Refrigerant 12) 1,1-Dichloroethane (Refrigerant 150a): 1,2-Dichloroethane (Refrigerant 150): 1,1-Dichloroethylene: cis-1,2-Dichloroethylene: trans-1,2-Dichloroethylene: Dichlorofluoromethane (see Refrigerant 21) Dichloromethane (Refrigerant 30): 1,2-Dichlorotetrafluoroethane (Refrigerant 114) 1,2,3-Dichlorotrifluoroethane (Refrigerant 123) Dielectric constant, of water, Diethylamine: n,n-Diethylaniline: Diethylene glycol: Diethyl ether: Diethyl ketone: Diethylsulfide: Differential condensation: Differential formulations for nonisothermal gas radiation, Differential resistance term in heat exchanger design, Differential vector operators in heat conduction, Diffraction models for radiative heat transfer from surfaces, Diffuse surfaces, radiative heat transfer between, Diffuse wall passages, radiative heat transfer in, Diffusers, single-phase flow and pressure drop in, Diffusion, in multi-component condensation, n,n-Diffusion coefficients: 1,1-Difluoroethane (Refrigerant 152a): Difluoromethane (Refrigerant 32): Diiodomethane: Diisobutylamine: Diisopropylamine: Diisopropylether: Dimensional analysis: Dimensionless groups: Dimethylacetylene: Dimethylamine: Dimethylaniline: 2,2-Dimethylbutane: 2,3-Dimethylbutane: 1,1-Dimethylcyclopentane: Dimethylether: Dimethylketone: 2,2-Dimethylpropane (neopentane): Dimethylsulfide: Dimpled surfaces, heat exchangers with, 1,4-Dioxane: Diphenyl: Diphenylamine: Diphenylether: Diphenylmethane: Dipropyl ether: Diisopropyl ether: Dipropyl ketone: Direct contact heat exchangers Direct contact heat transfer, Direct numerical simulation, of turbulence, Dirichlet boundary condition, finite difference method, Dished heads: Discretization in numerical analysis: Disk-and-doughnut baffled heat exchangers, Disks, free convective heat transfer from inclined, Dispersants, for fouling control, Dispersed flow (liquid-liquid), Dissipation of turbulent energy, Distillation: Distribution: Dittus-Boelter equation, for single-phase forced convective heat transfer, Dividing flow, loss coefficients in, Dodecane: 1-Dodecene: Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers, Double-pipe heat exchangers: Double segmental baffled heat exchangers, Downward facing surfaces, free convective heat transfer from, Downward flow in vertical tubes, flow patterns in gas/liquid, Dowtherm A: Dowtherm J: Dowtherms, as heat transfer media, Drag coefficient: Drag force: Drag reduction, Drainage, of condensate, Dreitser, G, Drift flux model for two-phase flows, Drogemuller, P, Droplets: Dropwise condensation Dry wall desuperheating (in condensation), Dryers: Drying loft, Drying rates, prediction of, Dryout: Ducts, single-phase fluid flow and pressure drop in, Duplex stainless steels, Durand correlation for heterogeneous conveyance in solid/liquid flow, Dynamically stable foam, Dyphyl, heat transfer media, Dzyubenko, B,
E F G H I J K L M N O P Q R S T U V W X Y Z

Density of Solids

DOI 10.1615/hedhme.a.000518

5.4 PROPERTIES OF SOLIDS
5.4.1 Density of solids

For a material with unknown density (i.e., mass per unit volume, ρ, in kg/m3 rarely more than the simplest facts will be available. Thus these have to be taken as the basis for deriving an estimated density.

A. Metal alloys

The densities of the pure metals are related to their places in the Periodic table but are not strictly parallel to their atomic masses. The density of alloys can be estimated as the composed density according to the mass fractions of the single elements in the alloy:

\[\label{eq1} \rho_A=\dfrac1{x_1/\rho_1+x_2/\rho_2+x_3/\rho_3} \tag{1}\]

where ρi is the density of the single component and ρA the density of the alloy.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here