Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),

Index

HEDH
A B C D E
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),
F G H I J K L M N O P Q R S T U V W X Y Z

Transport Properties of Superheated Gases

DOI 10.1615/hedhme.a.000534

5.5 PHYSICAL PROPERTY DATA TABLES
5.5.11 Transport properties of superheated gases at atmospheric pressure

The tables given in this section may be regarded as being supplementary to those in Section 524, which gave thermodynamic and transport properties of saturated vapors, and those in Section 525 and Section 537, which gave data for vapour at various pressures. A list of symbols and conversion factors were given in Section 524 page 6.

This section provides data for every compound listed in Section 533 as a vapour at atmospheric pressure. The temperature range for these data depends on the availability of the published data and/or the limits of the prediction techniques used to supply the complete data tables.

For tables derived from equations, a maximum temperature of 600 °C was taken to ensure reliability in the predicted data, and a lower limit of 0 °C, even if this is below the melting point, to provide a reasonable range for interpolation.

Because the effect of pressure on these properties is negligible (Section 500 and Section 501), the values given will be valid at all temperatures at atmospheric pressure. However, for the real gas (not present in a mixture) the density below the normal boiling point will need adjusting to the ambient pressure for the particular conditions.

Additional data (when available from the published source) has been included for the heat capacity at constant volume cv,g and for the speed of source Us.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here