Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
G-type shells in shell-and-tube heat exchangers: Gaddis, E S, Galerkin method, for heat conduction finite-element calculations, Galileo number, Gas-liquid flows: Gas-liquid-solid interfaces, fouling at, Gas-solid interfaces, fouling at, Gas tungsten arc welding, Gaseous fuels, properties of, Gases: Gaskets: Gauss-Seidel method, for solution of implicit equations, Geometric optics models for radiative heat transfer from surfaces, geothermal brines, fouling of heat exchangers by, Germany, Federal Republic of, mechanical design of heat exchangers in: Gersten, K, Girth flanges, in shell-and-tube heat exchangers, Glass production, furnaces and kilns for, Glycerol (glycerine): Gn (heat generation number), Gnielinski, V Gnielinski correlation, for heat transfer in tube banks, Gomez-Thodas method, for vapour pressure, Goodness factor, as a basis for comparison of plate fin heat exchanger surfaces, Goody narrow band model for gas radiation properties, Gorenflo correlation, for nucleate boiling, Gowenlock, R, Graetz number: Granular products, moving, heat transfer to, Graphite, density of, Grashof number Gravitational acceleration, effect in pool boiling, Gravity conveyor: Gregorig effect in enhancement of condensation, Grid baffles: Grid selection, for finite difference method, Griffin, J M, Groeneveld correlation for postdryout heat transfer, Groeneveld and Delorme correlation for postdryout heat transfer, Gross plastic deformation Group contribution parameters tables, Guerrieri and Talty correlations for forced convective heat transfer in two-phase flow, Gungor and Winterton correlation, for forced convective boiling, Gylys, J,

Index

HEDH
A B C D E F G
G-type shells in shell-and-tube heat exchangers: Gaddis, E S, Galerkin method, for heat conduction finite-element calculations, Galileo number, Gas-liquid flows: Gas-liquid-solid interfaces, fouling at, Gas-solid interfaces, fouling at, Gas tungsten arc welding, Gaseous fuels, properties of, Gases: Gaskets: Gauss-Seidel method, for solution of implicit equations, Geometric optics models for radiative heat transfer from surfaces, geothermal brines, fouling of heat exchangers by, Germany, Federal Republic of, mechanical design of heat exchangers in: Gersten, K, Girth flanges, in shell-and-tube heat exchangers, Glass production, furnaces and kilns for, Glycerol (glycerine): Gn (heat generation number), Gnielinski, V Gnielinski correlation, for heat transfer in tube banks, Gomez-Thodas method, for vapour pressure, Goodness factor, as a basis for comparison of plate fin heat exchanger surfaces, Goody narrow band model for gas radiation properties, Gorenflo correlation, for nucleate boiling, Gowenlock, R, Graetz number: Granular products, moving, heat transfer to, Graphite, density of, Grashof number Gravitational acceleration, effect in pool boiling, Gravity conveyor: Gregorig effect in enhancement of condensation, Grid baffles: Grid selection, for finite difference method, Griffin, J M, Groeneveld correlation for postdryout heat transfer, Groeneveld and Delorme correlation for postdryout heat transfer, Gross plastic deformation Group contribution parameters tables, Guerrieri and Talty correlations for forced convective heat transfer in two-phase flow, Gungor and Winterton correlation, for forced convective boiling, Gylys, J,
H I J K L M N O P Q R S T U V W X Y Z

Transfer coefficient dependencies

DOI 10.1615/hedhme.a.000096

1.2 DEFINITIONS AND RELATIONSHIPS
1.2.3 Transfer Coefficient Dependences

A. INTRODUCTION

Whether in terms of α, β, or gφ, a major part of the analyst’s concern is with ascribing numerical values to the interaction coefficients. These depend on the properties of the fluid, on the velocity of flow over the surface, on the shape and size of the interface, and on other factors. What is derived is a formula, or set of formulas, of the kind

\[\label{eq123_1} \alpha =\alpha \mbox{fn}(\lambda, L, c_{p}, p, \rho, \eta, \Delta T,\ldots) \tag{1}\]

where αfn(...) represents “α as a function of...”, and the quantities in the bracket represent all those expected to influence the value of α, namely, the thermal conductivity, a linear dimension, the specific heat, the density, the velocity, the viscosity, the temperature difference, and so on.

Such formulas exist, although not yet in sufficient measure, and they are usually expressed, for compactness and for maximum generality, in terms of dimensionless quantities such as the Stanton or Reynolds numbers. Therefore, in order to facilitate the presentation of the formulas, the next few sections are devoted to introducing and discussing the more important of these quantities.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here