Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Lamella heat exchangers, Laminar flow: Laminar flow control, of boundary layers, Lancaster, J F, Langelier index for water quality, Large eddy simulation, in prediction of turbulent boundary layers, Laws for turbulent flows: Layers of fluid, free convection heat transfer in, Le Fevre equations for free convective heat transfer, Leakage between streams, in shell-and-tube heat exchangers Leakage effects, on heat transfer and pressure drop in shell-and-tube heat exchangers, Leaks, in heat exchanger, sealing by explosive welding, Lebedev, M E, Lee and Kesler equation, for vapour pressure, L-footed fins, Lessing rings, characteristic of, as packings for fixed beds, Li equation, for critical temperature of mixtures, Lienhard and Dhir analysis of critical heat flux in pool boiling, Lienhard and Eichhorn criterion, for transition in critical heat flux mechanism in crossflow over single tube, Lift force: Liley, P E, Limb, D, Limpet coils: Linnhoff, B, Liquefaction, exergy analysis of, Liquid fluidized beds, Liquid fuels, properties of, Liquid hold-up, Liquid-liquid-gas flow, Liquid-liquid flow, Liquid metals: Liquid sheets, in direct contact heat transfer, Liquid-solid interfaces, fouling at, Liquids: Lister, D H, Local conditions hypothesis, for critical heat flux in flow boiling, Lockhart and Martinelli correlations: Lodge's rubberlike liquid (non-Newtonian), Logarithmic law region, Logarithmic mean temperature difference Longitudinal flow and heat transfer in tube banks, Long-tube vertical evaporator, Loss coefficient, Lost work in unit operations/exergy analysis, Louvered fins, in plate fin exchangers, Low-alloy steels: Low-finned tubes: Low-nickel steels, Lubricants, physical properties: Lucas methods

Index

HEDH
A B C D E F G H I J K L
Lamella heat exchangers, Laminar flow: Laminar flow control, of boundary layers, Lancaster, J F, Langelier index for water quality, Large eddy simulation, in prediction of turbulent boundary layers, Laws for turbulent flows: Layers of fluid, free convection heat transfer in, Le Fevre equations for free convective heat transfer, Leakage between streams, in shell-and-tube heat exchangers Leakage effects, on heat transfer and pressure drop in shell-and-tube heat exchangers, Leaks, in heat exchanger, sealing by explosive welding, Lebedev, M E, Lee and Kesler equation, for vapour pressure, L-footed fins, Lessing rings, characteristic of, as packings for fixed beds, Li equation, for critical temperature of mixtures, Lienhard and Dhir analysis of critical heat flux in pool boiling, Lienhard and Eichhorn criterion, for transition in critical heat flux mechanism in crossflow over single tube, Lift force: Liley, P E, Limb, D, Limpet coils: Linnhoff, B, Liquefaction, exergy analysis of, Liquid fluidized beds, Liquid fuels, properties of, Liquid hold-up, Liquid-liquid-gas flow, Liquid-liquid flow, Liquid metals: Liquid sheets, in direct contact heat transfer, Liquid-solid interfaces, fouling at, Liquids: Lister, D H, Local conditions hypothesis, for critical heat flux in flow boiling, Lockhart and Martinelli correlations: Lodge's rubberlike liquid (non-Newtonian), Logarithmic law region, Logarithmic mean temperature difference Longitudinal flow and heat transfer in tube banks, Long-tube vertical evaporator, Loss coefficient, Lost work in unit operations/exergy analysis, Louvered fins, in plate fin exchangers, Low-alloy steels: Low-finned tubes: Low-nickel steels, Lubricants, physical properties: Lucas methods
M N O P Q R S T U V W X Y Z

Introduction

DOI 10.1615/hedhme.a.000120

1.7.1 Introduction

Pinch Analysis first emerged as an energy-saving approach to the design of heat exchanger networks which concentrated on conceptual understanding. It did not seek automatic global optimisation, but instead user-driven solutions which were near-optimum for practical problems.

It has developed with speed from an energy-saving tool for heat exchanger networks into a general tool for overall process design. It is now being used for process changes, capital cost reduction, emissions reduction, debottlenecking, batch process design and total site integration.

The early developments relating to heat exchanger networks are still those for which it is widely known, rather than the much more significant and wide-ranging later developments relating to overall processes. Here we shall introduce the key principles and steps of Pinch Analysis, both well-established and more recent. However, even though Pinch Analysis can be used as a wide-ranging tool covering many aspects of process design, consideration will be restricted here to energy saving in heat exchanger networks.

A. Track Record

Pinch Analysis, has developed an impressive track record. The firstly publicly reported applications from ICI averaged 30% energy savings in chemical and petrochemical processes Linnhoff and Turner (1981). Similar applications reported by Union Carbide a few year later showed energy savings averaging 50%, resulting mainly from a better understanding of how to carry out process changes Linnhoff and Vredeveld (1984).

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here