Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Damage, sources of heat exchangers Damkohler number: Damping: Davis and Anderson criterion, for onset of nucleate boiling, Decal, heat transfer medium, Decane: 1-Decanol: 1-Decene: Degradation temperature, of polymers, Demisters, wire mesh, for multistage flash evaporators, Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow, Density: Deposition of droplets in annular flow Deposition in fouling, Desalination plants: Desuperheaters for use in association with evaporators, Developing flow in ducts: Dew-poin corrosion, Diathermanous fluid, 1,1-Dibromoethane: Dibromomethane: 1,2-Dibromotetrafluoroethane (Refrigerant 114B2): Dibutylamine: Dibutyl ether: Dichloroacetic acid: o-Dichlorobenzene: Dichlorodifluoromethane (see Refrigerant 12) 1,1-Dichloroethane (Refrigerant 150a): 1,2-Dichloroethane (Refrigerant 150): 1,1-Dichloroethylene: cis-1,2-Dichloroethylene: trans-1,2-Dichloroethylene: Dichlorofluoromethane (see Refrigerant 21) Dichloromethane (Refrigerant 30): 1,2-Dichlorotetrafluoroethane (Refrigerant 114) 1,2,3-Dichlorotrifluoroethane (Refrigerant 123) Dielectric constant, of water, Diethylamine: n,n-Diethylaniline: Diethylene glycol: Diethyl ether: Diethyl ketone: Diethylsulfide: Differential condensation: Differential formulations for nonisothermal gas radiation, Differential resistance term in heat exchanger design, Differential vector operators in heat conduction, Diffraction models for radiative heat transfer from surfaces, Diffuse surfaces, radiative heat transfer between, Diffuse wall passages, radiative heat transfer in, Diffusers, single-phase flow and pressure drop in, Diffusion, in multi-component condensation, n,n-Diffusion coefficients: 1,1-Difluoroethane (Refrigerant 152a): Difluoromethane (Refrigerant 32): Diiodomethane: Diisobutylamine: Diisopropylamine: Diisopropylether: Dimensional analysis: Dimensionless groups: Dimethylacetylene: Dimethylamine: Dimethylaniline: 2,2-Dimethylbutane: 2,3-Dimethylbutane: 1,1-Dimethylcyclopentane: Dimethylether: Dimethylketone: 2,2-Dimethylpropane (neopentane): Dimethylsulfide: Dimpled surfaces, heat exchangers with, 1,4-Dioxane: Diphenyl: Diphenylamine: Diphenylether: Diphenylmethane: Dipropyl ether: Diisopropyl ether: Dipropyl ketone: Direct contact heat exchangers Direct contact heat transfer, Direct numerical simulation, of turbulence, Dirichlet boundary condition, finite difference method, Dished heads: Discretization in numerical analysis: Disk-and-doughnut baffled heat exchangers, Disks, free convective heat transfer from inclined, Dispersants, for fouling control, Dispersed flow (liquid-liquid), Dissipation of turbulent energy, Distillation: Distribution: Dittus-Boelter equation, for single-phase forced convective heat transfer, Dividing flow, loss coefficients in, Dodecane: 1-Dodecene: Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers, Double-pipe heat exchangers: Double segmental baffled heat exchangers, Downward facing surfaces, free convective heat transfer from, Downward flow in vertical tubes, flow patterns in gas/liquid, Dowtherm A: Dowtherm J: Dowtherms, as heat transfer media, Drag coefficient: Drag force: Drag reduction, Drainage, of condensate, Dreitser, G, Drift flux model for two-phase flows, Drogemuller, P, Droplets: Dropwise condensation Dry wall desuperheating (in condensation), Dryers: Drying loft, Drying rates, prediction of, Dryout: Ducts, single-phase fluid flow and pressure drop in, Duplex stainless steels, Durand correlation for heterogeneous conveyance in solid/liquid flow, Dynamically stable foam, Dyphyl, heat transfer media, Dzyubenko, B,

Index

HEDH
A B C D
Damage, sources of heat exchangers Damkohler number: Damping: Davis and Anderson criterion, for onset of nucleate boiling, Decal, heat transfer medium, Decane: 1-Decanol: 1-Decene: Degradation temperature, of polymers, Demisters, wire mesh, for multistage flash evaporators, Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow, Density: Deposition of droplets in annular flow Deposition in fouling, Desalination plants: Desuperheaters for use in association with evaporators, Developing flow in ducts: Dew-poin corrosion, Diathermanous fluid, 1,1-Dibromoethane: Dibromomethane: 1,2-Dibromotetrafluoroethane (Refrigerant 114B2): Dibutylamine: Dibutyl ether: Dichloroacetic acid: o-Dichlorobenzene: Dichlorodifluoromethane (see Refrigerant 12) 1,1-Dichloroethane (Refrigerant 150a): 1,2-Dichloroethane (Refrigerant 150): 1,1-Dichloroethylene: cis-1,2-Dichloroethylene: trans-1,2-Dichloroethylene: Dichlorofluoromethane (see Refrigerant 21) Dichloromethane (Refrigerant 30): 1,2-Dichlorotetrafluoroethane (Refrigerant 114) 1,2,3-Dichlorotrifluoroethane (Refrigerant 123) Dielectric constant, of water, Diethylamine: n,n-Diethylaniline: Diethylene glycol: Diethyl ether: Diethyl ketone: Diethylsulfide: Differential condensation: Differential formulations for nonisothermal gas radiation, Differential resistance term in heat exchanger design, Differential vector operators in heat conduction, Diffraction models for radiative heat transfer from surfaces, Diffuse surfaces, radiative heat transfer between, Diffuse wall passages, radiative heat transfer in, Diffusers, single-phase flow and pressure drop in, Diffusion, in multi-component condensation, n,n-Diffusion coefficients: 1,1-Difluoroethane (Refrigerant 152a): Difluoromethane (Refrigerant 32): Diiodomethane: Diisobutylamine: Diisopropylamine: Diisopropylether: Dimensional analysis: Dimensionless groups: Dimethylacetylene: Dimethylamine: Dimethylaniline: 2,2-Dimethylbutane: 2,3-Dimethylbutane: 1,1-Dimethylcyclopentane: Dimethylether: Dimethylketone: 2,2-Dimethylpropane (neopentane): Dimethylsulfide: Dimpled surfaces, heat exchangers with, 1,4-Dioxane: Diphenyl: Diphenylamine: Diphenylether: Diphenylmethane: Dipropyl ether: Diisopropyl ether: Dipropyl ketone: Direct contact heat exchangers Direct contact heat transfer, Direct numerical simulation, of turbulence, Dirichlet boundary condition, finite difference method, Dished heads: Discretization in numerical analysis: Disk-and-doughnut baffled heat exchangers, Disks, free convective heat transfer from inclined, Dispersants, for fouling control, Dispersed flow (liquid-liquid), Dissipation of turbulent energy, Distillation: Distribution: Dittus-Boelter equation, for single-phase forced convective heat transfer, Dividing flow, loss coefficients in, Dodecane: 1-Dodecene: Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers, Double-pipe heat exchangers: Double segmental baffled heat exchangers, Downward facing surfaces, free convective heat transfer from, Downward flow in vertical tubes, flow patterns in gas/liquid, Dowtherm A: Dowtherm J: Dowtherms, as heat transfer media, Drag coefficient: Drag force: Drag reduction, Drainage, of condensate, Dreitser, G, Drift flux model for two-phase flows, Drogemuller, P, Droplets: Dropwise condensation Dry wall desuperheating (in condensation), Dryers: Drying loft, Drying rates, prediction of, Dryout: Ducts, single-phase fluid flow and pressure drop in, Duplex stainless steels, Durand correlation for heterogeneous conveyance in solid/liquid flow, Dynamically stable foam, Dyphyl, heat transfer media, Dzyubenko, B,
E F G H I J K L M N O P Q R S T U V W X Y Z

Assessing lost work in unit operations

DOI 10.1615/hedhme.a.000134

1.9.5 Assessing lost work in unit operations

A. Overview

A unit operation is a sub-element of a complete process, which is defined by a boundary or envelope circumscribing it. Material and energy may cross this boundary. The exergy entering the unit operation envelope via the feed streams or any work done on it will exceed the exergy leaving the envelope by a certain amount. This is the lost work. As we know, unit operations are hooked together in a chain or network to make a complete process. There is a logical direction for the flow of materials and energy — and therefore of exergy through the process. The final elements (unit operations) from which the products are delivered will require a net exergy input to deliver the products under the correct conditions and purities, and to offset the irreversibilities arising within its envelope. The exergy needed by this “final step” must be provided as external work supply or as an input in the streams entering that unit operation’s envelope from preceding unit operations. It thus becomes evident that the irreversibilities in a final step can have a “knock on” effect on the work which has to be done by preceding steps, which themselves are to some extent irreversible — and so on. There is often a compounding effect as one works backwards (in the sense of exergy flow) through the process. This is sometimes expressed by the statement “irreversibilities breed irreversibilities”. The issue is further developed and formalized by Kotas (1986), using the concept Coefficients of Structural Bonds, or CSB. Basically, this coefficient is the ratio of the change in irreversibility rate for the plant as a whole — to the change in a particular component, when one of the design parameters on that component is varied. This concept is intriguing for those wishing to pursue work in the exergy field, but for the rest, it is probably more of academic than of practical interest.

Exergy flow through a process can sometimes be conveniently depicted on a so-called “Grassmann diagram” see Figure 1. This is a development of the “Sankey” diagram used to show heat flow and losses (First Law).

Figure 1 Grassmann diagram

Recently some workers in the field have used exergy as means to assess the overall lifetime costs of a piece of equipment. This takes account not only of the exergy destroyed during its operation but also of the exergy consumed in manufacturing it from raw materials. See Cornelissen (1995).

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here