Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:

Index

HEDH
A B C D E F G H I J K L M N
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:
O P Q R S T U V W X Y Z

Thermal and Mechanical Properties of Heat Exchanger Construction Materials

DOI 10.1615/hedhme.a.000535

5.5 PHYSICAL PROPERTY DATA TABLES 5.5.10 Properties of liquids at temperatures below their boiling points

5.5 PHYSICAL PROPERTY DATA TABLES
5.5.12 Thermal and mechanical properties of heat exchanger construction material

This section provides data on the three essential properties of materials required for the design of heat exchangers, namely thermal conductivity, the mean coefficient of expansion (from ambient temperature to required temperature), and the modulus of elasticity. A wide variety of materials is used in practice, and the materials listed in the Standards of the American Society of Mechanical Engineers (ASME) have been taken as a basis for this report, with a few additions. The Unified Numbering System (UNS) and the Werkstoff-Nummer (WN) or DIN-Norm (DIN) have been given where applicable.

Different data sources give large variations (frequently up to 25%) in the values of these properties at high and/or low temperatures. In particular, significant disagreement between ASME and TEMA (Tubular Exchanger Manufacturers’ Association) tables is frequent. Where alternative sources have been referenced, preferred values have been adopted.

Data for many of the materials are available only at ambient temperatures, and values at other temperatures have been estimated by assuming the temperature variation to be similar for similar materials. Curves of property versus temperature sometimes exhibit maxima and minima, for example, in the thermal conductivity of some chromium steels or of aluminum alloys and in the coefficient of expansion of steels at high temperatures. In such cases it was not possible to extrapolate values from data over a limited temperature range because the point of inflection was unknown.

Values are given for carbon and low alloy steels (Table 1), high chrome steels (Table 2), nickel and nickel alloys (Table 3), copper and copper alloys (Table 4), aluminum alloys (Table 5), and titanium, zirconium, and cast iron (Table 6). Quantities and units used are: ρ, density (g/cm3); TC, thermal conductivity (W/m K); CE, coefficient of expansion (1/K), and ME, modulus of elasticity (GPa) (GPa = 109 Pa; 1 Pa = 1 N/m2; 1 psi = 6.894757×103 Pa).

Tabular information is given for the following materials:

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here