Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of

Index

HEDH
A
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of
B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Non-Newtonian Fluids

DOI 10.1615/hedhme.a.000150

2.2 SINGLE-PHASE FLUID FLOW
2.2.8 Non-Newtonian Fluids

A. Introduction
(by R. C. Armstrong)

Many fluids do not obey Newton’s law of viscosity; these materials are commonly grouped together under the broad heading of non-Newtonian fluids. Examples of non-Newtonian fluids include polymer solutions and melts, paints, soaps, biological fluids, greases, pastes, and suspensions. The field of study that is aimed at understanding the deformation and flow behavior of these substances is known as rheology. Because they make up the most commonly encountered subgroup of non-Newtonian materials, polymers will be emphasized in this section.

There are many simple experiments that can serve to illustrate the often dramatic differences in behavior between Newtonian and non-Newtonian fluids. If, for example, the "viscosity" of a polymer solution were determined in a falling-ball viscometer and in a tube flow experiment, different results might be obtained. If a rotating shaft is inserted into a beaker of polymeric fluid, the polymer "climbs" the rod. Polymer extruded through a circular orifice may swell to a diameter several times that of the hole. If a filament of molten polymer is suddenly stretched and then released, it will snap back nearly to its original length (Bird et al., 1977).

Because of the very high viscosities exhibited by most concentrated polymer solutions and melts, the flow of these fluids is laminar in most applications, and laminar flow will be the primary focus of this section. In Section B, experimental methods for characterizing non-Newtonian fluids are described. Section C then presents models for describing these properties, and Section D gives examples to illustrate the calculation of quantities of engineering importance. In Section E, turbulent tube flow of non-Newtonian fluids is discussed.

B. Experimental characterization of non-Newtonian fluids
(by R. C. Armstrong)

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here