Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Vacuum equipment, operational problems of, Vacuum operation, of reboilers, Valle, A, Valves: Vaned bends, single-phase flow and pressure drop in, Vapor blanketing, as mechanism of critical heat flux, Vapor injection, effect of on boiling heat transfer in tube bundles, Vapor-liquid disengagement, in kettle reboilers, Vapor-liquid separation, for evaporators, Vapor mixtures, condensation of, Vapor pressure, Vapor recompression, in evaporation, Vaporization, choice of evaporator type for, Vaporizer, double bundle, constructional features, Vapors, saturation properties of, Vapors, properties of superheated, Vasiliev, L, Vassilicos, J C, Velocity defect law: Velocity distribution: Velocity fluctuations, in turbulent pipe flow, Velocity ratio (slip ratio): Venting of condensers Vertical condensers: Vertical cylindrical fired heater, Vertical pipes: Vertical surfaces: Vertical thermosiphon reboilers: Vessels of non-circular cross section, design to ASME VIII code, Vessels of rectangular cross section, EN13445 guidance for, Vetere method, for enthalpy of vaporisation, Vibrated beds, heat transfer to, Vibration: Vinyl acetate: Vinyl benzene: Vinyl chloride: Virial equation: Virk equation for maximum drag reduction, Visco-elastic fluids, flow of, Viscometric functions (non-Newtonian flow), methods of determining, Viscosity: Viscosity number (Vi), Viscous dissipation, influence on heat transfer in non-Newtonian flows, Viscous heat generation, in scraped sauce heat exchangers, Viscous sublayer, in duct flow, Void fraction, Voidage, in fixed beds, definition, Volumetric heat transfer coefficient, Volumetric mass transfer coefficient, von Karman friction factor equation for fully rough surface, von Karman velocity defect law, Vortex flow, in helical coils of rectangular cross section, Vortex flow model, for twisted tube heat exchangers, Vortex shedding:

Index

HEDH
A B C D E F G H I J K L M N O P Q R S T U V
Vacuum equipment, operational problems of, Vacuum operation, of reboilers, Valle, A, Valves: Vaned bends, single-phase flow and pressure drop in, Vapor blanketing, as mechanism of critical heat flux, Vapor injection, effect of on boiling heat transfer in tube bundles, Vapor-liquid disengagement, in kettle reboilers, Vapor-liquid separation, for evaporators, Vapor mixtures, condensation of, Vapor pressure, Vapor recompression, in evaporation, Vaporization, choice of evaporator type for, Vaporizer, double bundle, constructional features, Vapors, saturation properties of, Vapors, properties of superheated, Vasiliev, L, Vassilicos, J C, Velocity defect law: Velocity distribution: Velocity fluctuations, in turbulent pipe flow, Velocity ratio (slip ratio): Venting of condensers Vertical condensers: Vertical cylindrical fired heater, Vertical pipes: Vertical surfaces: Vertical thermosiphon reboilers: Vessels of non-circular cross section, design to ASME VIII code, Vessels of rectangular cross section, EN13445 guidance for, Vetere method, for enthalpy of vaporisation, Vibrated beds, heat transfer to, Vibration: Vinyl acetate: Vinyl benzene: Vinyl chloride: Virial equation: Virk equation for maximum drag reduction, Visco-elastic fluids, flow of, Viscometric functions (non-Newtonian flow), methods of determining, Viscosity: Viscosity number (Vi), Viscous dissipation, influence on heat transfer in non-Newtonian flows, Viscous heat generation, in scraped sauce heat exchangers, Viscous sublayer, in duct flow, Void fraction, Voidage, in fixed beds, definition, Volumetric heat transfer coefficient, Volumetric mass transfer coefficient, von Karman friction factor equation for fully rough surface, von Karman velocity defect law, Vortex flow, in helical coils of rectangular cross section, Vortex flow model, for twisted tube heat exchangers, Vortex shedding:
W X Y Z

Solid-Liquid Flow

DOI 10.1615/hedhme.a.000156

2.3.4 Solid-liquid flow

A. Principle of hydraulic conveyance

Contrary to the pneumatic conveyance (Section 155), the hydraulic conveyance of granular and powdered solid materials can also be used for very long distances because the carrier fluid is so incompressible. The applied physical principles are similar to those of the pneumatic conveyance. In this section only some special aspects, different from pneumatic conveyance, will be treated.

The most essential differences between pneumatic and hydraulic conveying systems are the aforementioned incompressibility and the density of the carrier fluid. Because of the high density of the carrier fluid, the flow forces required for the transportation of solids can be achieved at relatively low flow velocities. In addition, the buoyancy of the particles in the liquid partly balances the gravitational forces. The effect on the settling velocity of the particles is apparent from Figure 1 and Equation 155.6.

Figure 1 Free-fall velocity of a single particle in water (Weber, 1974)

B. Flow patterns

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here