Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),

Index

HEDH
A B C D E
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),
F G H I J K L M N O P Q R S T U V W X Y Z

Liquid-Liquid Flow

DOI 10.1615/hedhme.a.000157

2.3 MULTIPHASE FLUID FLOW AND PRESSURE DROP
2.3.5 Liquid-liquid two-phase flow

A. General description of liquid-liquid flows: Flow patterns

Flows of mixtures of two immiscible liquids are encountered frequently in the design of industrial processes and equipment. The two liquids are almost exclusively an aqueous phase (water) and an organic (oil) phase. Gas-liquid systems actually represent a very particular extreme of two-fluid systems characterized by low-density ratio and low viscosity ratio. In liquid-liquid systems the density contrast between the phases is low. However, the oil phase may be lighter or heavier than the aqueous phase. Hence, the viscosity ratio between the lighter and heavier liquids ranges between more than a million to less than 10–6. Oils and oil-water emulsions may show a Newtonian or non-Newtonian rheological behavior (Sherman, 1968 and Schramm, 1992). Therefore, the various concepts and results experienced in gas-liquid two-phase flows cannot be readily translated to liquid-liquid systems.

(a) Flow patterns in horizontal tubes

Diverse flow patterns were observed in liquid-liquid systems (Russell and Charles, 1959; Russell et al., 1959; Charles et al., 1961a; Charles et al., 1961b; Guzhov and Medvedev, 1971; Guzhov et al., 1973; Guzhov et al., 1974; Soot, 1971; Malinowsky, 1975; Laflin and Oglesby, 1976; Oglesby, 1979; Scott, 1985; Arirachakaran et al., 1989; Cox, 1986; Valle and Utvik, 1997; Valle and Kvandal, 1995; Trallero, 1995; Angeli, 1996; Tabeling et al., 1991; Nädler, 1995; Mewes et al., 1997; Andreini et al., 1997; Hapanowicz et al., 1997). These may be classified into four basic prototypes:

  1. Stratified layers with either smooth or wavy interface.

  2. Large slugs, elongated or spherical, of one liquid in the other.

  3. A dispersion of relatively fine drops of one liquid in the other.

  4. Annular flow, where one of the liquids forms the core and the other liquid flows in the annulus.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here