Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:

Index

HEDH
A B C D E F G H
Hagen-Poiseuille law Hagen-Rubens relation, between electrical and optical constants, Hall Taylor, N S, Halogenated hydrocarbons: Handley and Heggs equation for fixed bed pressure drop, Hankinson and Thomson method, for liquid density: Hardening (precipative) of stainless steels, Hardwick, R, Harris, D, Hausen equation for developing laminar flow, Hays, G F Headers in shell-and-tube heat exchangers, Heads, in heat exchangers: Heat and mass transfer: Heat exchanger design, introduction, Heat exchangers: Heat of vaporisation (see Enthalpy of vaporisation), of pure substances Heat pipes: Heat pumping, relation to heat exchanger network design, Heat storage (see Regenerators and thermal energy storage) entropy generation in, Heat transfer: Heat transfer coefficient: Heat transfer media, Heat transfer salt, Heat transfer regimes: Heat of vaporization, Heated cavity reflectometer, Heating media, for reboilers, Heavy water, physical properties of, Heggs, P J, Helical coils of circular cross section: Helical coils of rectangular cross section, Helical inserts, for enhancement of heat transfer in boiling, Helium: Helmholtz reciprocity principle, in radiative heat transfer, Henry, J A R, Henry-Fauske model, for critical two-phase flow, Henry's law, for partial pressure, Heptadecane: Heptadecene: Heptane: 1-Heptanol: 1-Heptene: Herman, K W, Hermes, C L L, Heterogeneous conveyance in horizontal pipes, Heterogeneous nucleation in boiling, Hewitt, G F Hexachloroethane (Refrigerant 116): Hexacyclopentane, superheated vapor properties, Hexadecane: Hexadecene: 1,5-Hexadiene: Hexagonal cells, in free convection, Hexamethylbenzene: Hexane: Hexanoic acid: 1-Hexanol: 1-Hexene: Hexylbenzene: Hexylcyclohexane: Hexylcyclopentane, Hicks equation, for fixed-bed pressure drop, High pressure closures, ASME VIII code guidance for, High-chrome steels, thermal and mechanical properties, High-finned tubes, correlations for single-phase heat transfer in flow over, Hills, P D Hohlraum cavity, Holdup, in liquid-liquid flow, Holland, guide to national practice for mechanical design of heat exchangers, Homogeneous condensation (fog formation), Homogeneous model: Homogeneous nucleation: Honeycombs: Hopkins, D, Horizontal condensers: Horizontal cylinders: Horizontal layers, of fluid, free convection heat transfer in, Horizontal pipes: Horizontal shell-side evaporator, Horizontal surfaces: Horizontal thermosiphon reboilers: Horizontal tube-side evaporator, Horizontal tubes: Hottel's rule, in absorption of radiation by gases, Hsu criterion, for onset of nucleate boiling, Hybrid cooling towers, Hydraulic conveyance: Hydraulic expansion, of tubes into tube sheets in shell-and-tube heat exchangers, Hydraulic turbine, lost work in, Hydraulic resistance, in flow of supercritical fluids, Hydraulically smooth surface, Hydrazine: Hydrocarbons: Hydrodynamic entrance length, in single-phase flow in ducts, Hydrogen: Hydrogen bromide: Hydrogen chloride: Hydrogen cyanide: Hydrogen fluoride: Hydrogen iodide: Hydrogen peroxide: Hydrogen sulfide: Hydrostatic testing of shell-and-tube heat exchangers, Hysteresis:
I J K L M N O P Q R S T U V W X Y Z

General Introduction

DOI 10.1615/hedhme.a.000184

2.6.1 General introduction

A. Modes of condensation

Condensate may form from vapor in a number of different ways as illustrated in Figure 1. These ways are as follows:

  1. Filmwise condensation: The condensate forms a continuous film on the cooled surface. This is the most important mode of condensation occurring in industrial equipment and is discussed in Section 185.
  2. Homogeneous condensation: The vapor condenses out as droplets suspended in the gas phase, thus forming a fog. A necessary condition for this to occur is that the vapor is below saturation temperature, which may be achieved (as illustrated) by increasing the pressure as the vapor flows through a smooth expansion in flow area. In condensers, however, it usually occurs when condensing high-molecular-weight vapors in the presence of noncondensable gas. This topic is dealt with in Section 190.
  3. Dropwise condensation: This occurs when the condensate is formed as droplets on a cooled surface instead of as a continuous film. High heat transfer coefficients can be obtained with dropwise condensation, but this Is difficult to maintain continuously in heat exchangers. This topic is discussed in Section 188.
  4. Direct contact condensation: This occurs when vapor is brought directly into contact with a cold liquid.
  5. Condensation of vapor mixtures forming immiscible liquids: A typical example of this is when a steam-hydrocarbon mixture is condensed. The patterns formed by the liquid phases are complicated and varied as described in Section 187, where this topic is presented.

Figure 1 Illustration of modes of condensation

B. Resistances to condensation

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here