Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:

Index

HEDH
A B C D E F G H I J K L M N
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:
O P Q R S T U V W X Y Z

General Introduction

DOI 10.1615/hedhme.a.000184

2.6.1 General introduction

A. Modes of condensation

Condensate may form from vapor in a number of different ways as illustrated in Figure 1. These ways are as follows:

  1. Filmwise condensation: The condensate forms a continuous film on the cooled surface. This is the most important mode of condensation occurring in industrial equipment and is discussed in Section 185.
  2. Homogeneous condensation: The vapor condenses out as droplets suspended in the gas phase, thus forming a fog. A necessary condition for this to occur is that the vapor is below saturation temperature, which may be achieved (as illustrated) by increasing the pressure as the vapor flows through a smooth expansion in flow area. In condensers, however, it usually occurs when condensing high-molecular-weight vapors in the presence of noncondensable gas. This topic is dealt with in Section 190.
  3. Dropwise condensation: This occurs when the condensate is formed as droplets on a cooled surface instead of as a continuous film. High heat transfer coefficients can be obtained with dropwise condensation, but this Is difficult to maintain continuously in heat exchangers. This topic is discussed in Section 188.
  4. Direct contact condensation: This occurs when vapor is brought directly into contact with a cold liquid.
  5. Condensation of vapor mixtures forming immiscible liquids: A typical example of this is when a steam-hydrocarbon mixture is condensed. The patterns formed by the liquid phases are complicated and varied as described in Section 187, where this topic is presented.

Figure 1 Illustration of modes of condensation

B. Resistances to condensation

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here