Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Vacuum equipment, operational problems of, Vacuum operation, of reboilers, Valle, A, Valves: Vaned bends, single-phase flow and pressure drop in, Vapor blanketing, as mechanism of critical heat flux, Vapor injection, effect of on boiling heat transfer in tube bundles, Vapor-liquid disengagement, in kettle reboilers, Vapor-liquid separation, for evaporators, Vapor mixtures, condensation of, Vapor pressure, Vapor recompression, in evaporation, Vaporization, choice of evaporator type for, Vaporizer, double bundle, constructional features, Vapors, saturation properties of, Vapors, properties of superheated, Vasiliev, L, Vassilicos, J C, Velocity defect law: Velocity distribution: Velocity fluctuations, in turbulent pipe flow, Velocity ratio (slip ratio): Venting of condensers Vertical condensers: Vertical cylindrical fired heater, Vertical pipes: Vertical surfaces: Vertical thermosiphon reboilers: Vessels of non-circular cross section, design to ASME VIII code, Vessels of rectangular cross section, EN13445 guidance for, Vetere method, for enthalpy of vaporisation, Vibrated beds, heat transfer to, Vibration: Vinyl acetate: Vinyl benzene: Vinyl chloride: Virial equation: Virk equation for maximum drag reduction, Visco-elastic fluids, flow of, Viscometric functions (non-Newtonian flow), methods of determining, Viscosity: Viscosity number (Vi), Viscous dissipation, influence on heat transfer in non-Newtonian flows, Viscous heat generation, in scraped sauce heat exchangers, Viscous sublayer, in duct flow, Void fraction, Voidage, in fixed beds, definition, Volumetric heat transfer coefficient, Volumetric mass transfer coefficient, von Karman friction factor equation for fully rough surface, von Karman velocity defect law, Vortex flow, in helical coils of rectangular cross section, Vortex flow model, for twisted tube heat exchangers, Vortex shedding:

Index

HEDH
A B C D E F G H I J K L M N O P Q R S T U V
Vacuum equipment, operational problems of, Vacuum operation, of reboilers, Valle, A, Valves: Vaned bends, single-phase flow and pressure drop in, Vapor blanketing, as mechanism of critical heat flux, Vapor injection, effect of on boiling heat transfer in tube bundles, Vapor-liquid disengagement, in kettle reboilers, Vapor-liquid separation, for evaporators, Vapor mixtures, condensation of, Vapor pressure, Vapor recompression, in evaporation, Vaporization, choice of evaporator type for, Vaporizer, double bundle, constructional features, Vapors, saturation properties of, Vapors, properties of superheated, Vasiliev, L, Vassilicos, J C, Velocity defect law: Velocity distribution: Velocity fluctuations, in turbulent pipe flow, Velocity ratio (slip ratio): Venting of condensers Vertical condensers: Vertical cylindrical fired heater, Vertical pipes: Vertical surfaces: Vertical thermosiphon reboilers: Vessels of non-circular cross section, design to ASME VIII code, Vessels of rectangular cross section, EN13445 guidance for, Vetere method, for enthalpy of vaporisation, Vibrated beds, heat transfer to, Vibration: Vinyl acetate: Vinyl benzene: Vinyl chloride: Virial equation: Virk equation for maximum drag reduction, Visco-elastic fluids, flow of, Viscometric functions (non-Newtonian flow), methods of determining, Viscosity: Viscosity number (Vi), Viscous dissipation, influence on heat transfer in non-Newtonian flows, Viscous heat generation, in scraped sauce heat exchangers, Viscous sublayer, in duct flow, Void fraction, Voidage, in fixed beds, definition, Volumetric heat transfer coefficient, Volumetric mass transfer coefficient, von Karman friction factor equation for fully rough surface, von Karman velocity defect law, Vortex flow, in helical coils of rectangular cross section, Vortex flow model, for twisted tube heat exchangers, Vortex shedding:
W X Y Z

Film Condensation of Pure Vapour

DOI 10.1615/hedhme.a.000185

2.6 CONDENSATION
2.6.2 Film Condensation of Pure Vapour

A. Introduction

The various resistances to heat transfer during condensation are described in Section 184B. In condensation of a pure vapour, the main resistance is that of the film of condensate which forms on the cooled surface. With a laminar condensate film, heat transfer is by conduction so a thin film will give a lower resistance and therefore a higher heat transfer coefficient than a thick film. Turbulence in the film acts to increase the heat transfer coefficient. Vapour shear has the effect of thinning the film, inducing turbulence, and therefore of increasing the heat transfer coefficient. Other factors which affect the condensate heat transfer coefficient are waves on the film surface, droplet entrainment and deposition, condensate splashing, and condensate subcooling.

Section B provides methods for heat transfer with condensation on a vertical surface, which in a heat exchanger would normally be a vertical tube. Figure 1 illustrates condensation on a vertical surface when the vapour is considered to be stagnant and there is therefore no effect of vapour shear on the condensate film. The condensate drains vertically downwards under gravity, with a flowrate steadily increasing from zero at the top. At the very low film Reynolds numbers at the top of the surface the condensate flow is laminar and wave-free. At some point down the tube surface a transition occurs where waves form on the condensate film. This transition is due to instabilities at the vapour-liquid interface, and it can be characterised by the film Reynolds number. At a much higher Reynolds number there is a transition from laminar-type flow to turbulent flow. In the laminar region the heat transfer coefficient decreases as the Reynolds number increases. The rate of decrease becomes smaller in the laminar-wavy region because of the disturbances caused by the waves. In the turbulent region the higher effective viscosity causes the film to become thicker. However the overall effect in the turbulent region is that the heat transfer coefficient increases as the Reynolds number increases. This is because the increased convection due to turbulence more than compensates for the thickening film. Liquid metals can behave differently, as shown in Section F.

Figure 1 Condensation on a vertical surface in the absence of vapour shear

The effect of a downwards vapour velocity is to increase the heat transfer coefficient by both thinning the film and inducing turbulence (see Section B). An upward vapour velocity will tend to have the opposite effect. However a phenomenon known as flooding occurs before vapour velocities are high enough to affect heat transfer significantly. This phenomenon is where the upwards vapour flow prevents the condensate from draining from the bottom of the surface. This is discussed in Section B(e).

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here