Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Vacuum equipment, operational problems of, Vacuum operation, of reboilers, Valle, A, Valves: Vaned bends, single-phase flow and pressure drop in, Vapor blanketing, as mechanism of critical heat flux, Vapor injection, effect of on boiling heat transfer in tube bundles, Vapor-liquid disengagement, in kettle reboilers, Vapor-liquid separation, for evaporators, Vapor mixtures, condensation of, Vapor pressure, Vapor recompression, in evaporation, Vaporization, choice of evaporator type for, Vaporizer, double bundle, constructional features, Vapors, saturation properties of, Vapors, properties of superheated, Vasiliev, L, Vassilicos, J C, Velocity defect law: Velocity distribution: Velocity fluctuations, in turbulent pipe flow, Velocity ratio (slip ratio): Venting of condensers Vertical condensers: Vertical cylindrical fired heater, Vertical pipes: Vertical surfaces: Vertical thermosiphon reboilers: Vessels of non-circular cross section, design to ASME VIII code, Vessels of rectangular cross section, EN13445 guidance for, Vetere method, for enthalpy of vaporisation, Vibrated beds, heat transfer to, Vibration: Vinyl acetate: Vinyl benzene: Vinyl chloride: Virial equation: Virk equation for maximum drag reduction, Visco-elastic fluids, flow of, Viscometric functions (non-Newtonian flow), methods of determining, Viscosity: Viscosity number (Vi), Viscous dissipation, influence on heat transfer in non-Newtonian flows, Viscous heat generation, in scraped sauce heat exchangers, Viscous sublayer, in duct flow, Void fraction, Voidage, in fixed beds, definition, Volumetric heat transfer coefficient, Volumetric mass transfer coefficient, von Karman friction factor equation for fully rough surface, von Karman velocity defect law, Vortex flow, in helical coils of rectangular cross section, Vortex flow model, for twisted tube heat exchangers, Vortex shedding:

Index

HEDH
A B C D E F G H I J K L M N O P Q R S T U V
Vacuum equipment, operational problems of, Vacuum operation, of reboilers, Valle, A, Valves: Vaned bends, single-phase flow and pressure drop in, Vapor blanketing, as mechanism of critical heat flux, Vapor injection, effect of on boiling heat transfer in tube bundles, Vapor-liquid disengagement, in kettle reboilers, Vapor-liquid separation, for evaporators, Vapor mixtures, condensation of, Vapor pressure, Vapor recompression, in evaporation, Vaporization, choice of evaporator type for, Vaporizer, double bundle, constructional features, Vapors, saturation properties of, Vapors, properties of superheated, Vasiliev, L, Vassilicos, J C, Velocity defect law: Velocity distribution: Velocity fluctuations, in turbulent pipe flow, Velocity ratio (slip ratio): Venting of condensers Vertical condensers: Vertical cylindrical fired heater, Vertical pipes: Vertical surfaces: Vertical thermosiphon reboilers: Vessels of non-circular cross section, design to ASME VIII code, Vessels of rectangular cross section, EN13445 guidance for, Vetere method, for enthalpy of vaporisation, Vibrated beds, heat transfer to, Vibration: Vinyl acetate: Vinyl benzene: Vinyl chloride: Virial equation: Virk equation for maximum drag reduction, Visco-elastic fluids, flow of, Viscometric functions (non-Newtonian flow), methods of determining, Viscosity: Viscosity number (Vi), Viscous dissipation, influence on heat transfer in non-Newtonian flows, Viscous heat generation, in scraped sauce heat exchangers, Viscous sublayer, in duct flow, Void fraction, Voidage, in fixed beds, definition, Volumetric heat transfer coefficient, Volumetric mass transfer coefficient, von Karman friction factor equation for fully rough surface, von Karman velocity defect law, Vortex flow, in helical coils of rectangular cross section, Vortex flow model, for twisted tube heat exchangers, Vortex shedding:
W X Y Z

Condensation of Vapour Mixtures

DOI 10.1615/hedhme.a.000186

2.6 CONDENSATION
2.6.3 Condensation of Vapour Mixtures

A. Introduction

The author would like to acknowledge the frequent use he has made of the previous article by D. Butterworth in HEDH in 1983. His material has been expanded to include many important developments in the understanding of mixed vapour condensation.

Over this period ever increasing reliance has been placed on proprietary, computerised design and rating programs. This being so, it is more necessary than ever for the design engineer to have a good understanding of the condensation process and the limitations of the design methods available to him.

Mixture condensation differs from pure vapour condensation in two ways. Firstly the temperature of the condensing process changes through the condenser, and secondly, mass transfer effects are introduced in addition to those of heat transfer.

Figure 1 shows a typical condensation, or cooling curve, for a mixture of vapours. It is a plot of saturation, or dew temperature, Tg*, against specific enthalpy, h, and gives an approximation to the path followed by a condensation process through a condenser, (Section B).

, coolant temperature and pressure, , described in Section C(d). The formulation of the latter equation is outside the scope of this section but pressure drop is considered in for tubes and for shellside flow in tubular exchangers.

at = .

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here