Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
McNaught, J M, Macdonald equation, for fixed-bed pressure drop, Mach number, Macleod-Sugden method for surface tension Macrolayer consumption model for critical heat flux in pool boiling, Maddox, R N Magnetic fields, effect on properties of rheologically complex materials, Magnetic devices, for fouling mitigation, Magnetohydrodynamcs, inaugmentation of heat transfer in microfluidic systems, Margarine manufacture, crystallization of edible oils and fats in, scraped surface heat exchangers for, Marlotherm, heat transfer media, Martensitic stainless steels, Martin, H Martinelli and Boelter equations for combined free and forced convection, Martinelli and Nelson correlations: Mass absorption coefficient, Mass extinction coefficient, Mass fraction, in multicomponent mixtures, Mass scattering coefficient, Mass transfer: Mass transfer coefficient: Materials of construction, for heat exchangers, Low temperature operation, ASME VIII code guidelines for, Matovosian, Robert, Matrix inversion techniques, in radiative heat transfer, Maximum drag reduction Maximum velocities (in shell-and-tube heat exchangers) Maxwell model, for non-Newtonian fluid, Maxwell-Stefan equations, for multicomponent diffusion, Maxwell's equations, for electromagnetic radiation, Mean beam length concept, in radiative heat transfer: Mean phase content, Mean temperature difference: Measurement of fouling resistance, Mechanical design of heat exchangers: Mechanical draft cooling towers, Mechanical loads, specifications in EN13445, Mechanical vapour compression cycles in refrigeration, Mediatherm, heat transfer medium, Melo, L F, Melting, thermal conduction in, Melting point: Mercury: Merilo correlation, for critical heat flux in horizontal tubes, Merkel's equation, in cooling tower design, Mertz, R, Metais and Eckert diagrams, for regimes of convection: Metals: Metallurgical industry, kilns and furnaces for, Metastable equilibrium, of vapor and liquid, Methane: Methanol: Methyl acetate: Methylacetylene: Methyl acrylate: Methyl amine n-Methylaniline: Methyl benzoate: 2-Methyl-1,3-Butadiene (Isoprene): 2-Methylbutane (isopentane): Methylbutanoate: 2-Methyl-2-butene: Methylcyclohexane: Methylcyclopentane: Methylethylketone: Methyl formate: Metallurgical slag, use of submerged combustion in reprocessing of, Methyl fluorate: 2-Methylhexane: Methylisobutylketone: Methylmercaptan: 1-Methylnaphthalene: 2-Methylnaphthalene: 2-Methylpentane: 3-Methylpentane: 2-Methylpropane (isobutane): 2-Methylpropene: Methyl propionate: Methylpropylether: Methylpropyl ketone: Methyl salicylate: Methyl-t-butyl ether: Microbubbles, for drag reduction, Microchannels (see also microfluidics) Micro-fin tubes: Microfluidics, enhancement of heat transfer in, Mie scattering, in pulverized coal combustion, Miller, C J Miller, E R Mineral oils, as heat transfer media, physical properties of, Mineral wool production, submerged combustion systems for, Minimum fluidization velocity, Minimum heat flux in pool boiling: Minimum tubeside velocity, in shell-and-tube heat exchangers, Minimum velocity for fluidization, Minimum wetting rate, for binary mixtures, Mirror-image concept, in radiative heat transfer, Mirrors, spectral characteristics of reflectance from, Mishkinis, D, Mist flow: Mitigation of fouling, Mixed convection occurrence in horiozntal circular pipe, Metais and Eckert diagram for, Mixing (shell-side), in twisted tube heat exchangers, Mixing length, in turbulent flow, Mixtures: Modelling, of fouling: Models, theory of, Modulus of elasticity: Moffat, R S M, Molecular gas radiation properties, Molecular weight: Mollier chart, for humid air, Momentum equation: Monitoring, on line, of fouling, Monochloroacetic acid: Monte Carlo methods, in radiative heat transfer, Moody chart: Morris, M Mostinski correlations: Moving bed, heat transfer to, Muchowski, E, Mueller, A C Muller-Steinhagen, H Multicomponent mixtures: Multidimensional systems, heat conduction in, Multiflux methods, for radiative heat transfer in nonisothermal gases, Multipass shell-and-tube heat exchangers, Multiphase fluid flow and pressure drop: Multiple duties, in plate heat exchangers, Multiple effect evaporation, Multiple hairpin heat exchanger, Multistage flash evaporation (MSF) Multizone model, for furnaces,

Index

HEDH
A B C D E F G H I J K L M
McNaught, J M, Macdonald equation, for fixed-bed pressure drop, Mach number, Macleod-Sugden method for surface tension Macrolayer consumption model for critical heat flux in pool boiling, Maddox, R N Magnetic fields, effect on properties of rheologically complex materials, Magnetic devices, for fouling mitigation, Magnetohydrodynamcs, inaugmentation of heat transfer in microfluidic systems, Margarine manufacture, crystallization of edible oils and fats in, scraped surface heat exchangers for, Marlotherm, heat transfer media, Martensitic stainless steels, Martin, H Martinelli and Boelter equations for combined free and forced convection, Martinelli and Nelson correlations: Mass absorption coefficient, Mass extinction coefficient, Mass fraction, in multicomponent mixtures, Mass scattering coefficient, Mass transfer: Mass transfer coefficient: Materials of construction, for heat exchangers, Low temperature operation, ASME VIII code guidelines for, Matovosian, Robert, Matrix inversion techniques, in radiative heat transfer, Maximum drag reduction Maximum velocities (in shell-and-tube heat exchangers) Maxwell model, for non-Newtonian fluid, Maxwell-Stefan equations, for multicomponent diffusion, Maxwell's equations, for electromagnetic radiation, Mean beam length concept, in radiative heat transfer: Mean phase content, Mean temperature difference: Measurement of fouling resistance, Mechanical design of heat exchangers: Mechanical draft cooling towers, Mechanical loads, specifications in EN13445, Mechanical vapour compression cycles in refrigeration, Mediatherm, heat transfer medium, Melo, L F, Melting, thermal conduction in, Melting point: Mercury: Merilo correlation, for critical heat flux in horizontal tubes, Merkel's equation, in cooling tower design, Mertz, R, Metais and Eckert diagrams, for regimes of convection: Metals: Metallurgical industry, kilns and furnaces for, Metastable equilibrium, of vapor and liquid, Methane: Methanol: Methyl acetate: Methylacetylene: Methyl acrylate: Methyl amine n-Methylaniline: Methyl benzoate: 2-Methyl-1,3-Butadiene (Isoprene): 2-Methylbutane (isopentane): Methylbutanoate: 2-Methyl-2-butene: Methylcyclohexane: Methylcyclopentane: Methylethylketone: Methyl formate: Metallurgical slag, use of submerged combustion in reprocessing of, Methyl fluorate: 2-Methylhexane: Methylisobutylketone: Methylmercaptan: 1-Methylnaphthalene: 2-Methylnaphthalene: 2-Methylpentane: 3-Methylpentane: 2-Methylpropane (isobutane): 2-Methylpropene: Methyl propionate: Methylpropylether: Methylpropyl ketone: Methyl salicylate: Methyl-t-butyl ether: Microbubbles, for drag reduction, Microchannels (see also microfluidics) Micro-fin tubes: Microfluidics, enhancement of heat transfer in, Mie scattering, in pulverized coal combustion, Miller, C J Miller, E R Mineral oils, as heat transfer media, physical properties of, Mineral wool production, submerged combustion systems for, Minimum fluidization velocity, Minimum heat flux in pool boiling: Minimum tubeside velocity, in shell-and-tube heat exchangers, Minimum velocity for fluidization, Minimum wetting rate, for binary mixtures, Mirror-image concept, in radiative heat transfer, Mirrors, spectral characteristics of reflectance from, Mishkinis, D, Mist flow: Mitigation of fouling, Mixed convection occurrence in horiozntal circular pipe, Metais and Eckert diagram for, Mixing (shell-side), in twisted tube heat exchangers, Mixing length, in turbulent flow, Mixtures: Modelling, of fouling: Models, theory of, Modulus of elasticity: Moffat, R S M, Molecular gas radiation properties, Molecular weight: Mollier chart, for humid air, Momentum equation: Monitoring, on line, of fouling, Monochloroacetic acid: Monte Carlo methods, in radiative heat transfer, Moody chart: Morris, M Mostinski correlations: Moving bed, heat transfer to, Muchowski, E, Mueller, A C Muller-Steinhagen, H Multicomponent mixtures: Multidimensional systems, heat conduction in, Multiflux methods, for radiative heat transfer in nonisothermal gases, Multipass shell-and-tube heat exchangers, Multiphase fluid flow and pressure drop: Multiple duties, in plate heat exchangers, Multiple effect evaporation, Multiple hairpin heat exchanger, Multistage flash evaporation (MSF) Multizone model, for furnaces,
N O P Q R S T U V W X Y Z

Condensation of Vapour Mixtures Forming Immicible Liquids

DOI 10.1615/hedhme.a.000187

2.6 CONDENSATION
2.6.4 Condensation of vapour mixtures forming immiscible liquids

A. Introduction

The author would like to acknowledge the use he has made of the previous article in HEDH, written by R. Sardesai in 1983. However a significant change in approach has been adopted and the present article has been written as a consistent extension to Section 186. Section 186, Webb and McNaught (1980) and Webb (1990) should be read as pre-cursors to the present article.

The formation of a second immiscible condensate phase during condensation can affect the behaviour in a number of ways and reliable design should account for the possibility. Firstly various modes of condensation may occur. Thus it is possible for a single phase condensate to be formed. Vapours, which will form the other phase, act as non-condensing species imposing a greater gas-side resistance. Secondly when both liquid condensates are present the nature of the flow pattern will influence the condensate film heat transfer coefficient.

The various modes of heat transfer which are possible may be identified by consideration of the phase diagram, Figure 1, which applies for the case of mixtures which may be considered fully immiscible as liquids. The state of the mixture may lie in any of the four regions of the diagram, vapour, two-phase with liquid 1 present, two-phase with liquid 2 present or all liquid. Vapour-liquid equilibrium states with liquid 1 and 2 occur along FE and EG respectively, with the azeotrope at E, where vapour and both liquid phases co-exist at equilibrium.

Figure 1 Phase diagram for vapours which form immiscible condensates

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here