Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Baffle leakage in shell-and-tube heat exchangers: Baffles in shell-and-tube heat exchangers: Baker flow regime map for horizontal gas-liquid flow, Balance equation (applied to complete equipment), Band dryer: Bandel and Schlunder correlations, for boiling in horizontal tubes, Basket-type evaporator, Barbosa, J R Jr, Bateman, G, Bayonet tube heat exchangers, constructional features of, Bayonet tube evaporators, Beaton, C F, Beer-Lambert law, Bejan, A, Bell-Delaware method for shell-side heat transfer and pressure drop in shell-and-tube heat exchangers, Bell and Ghaly method for calculation of multicomponent condensation, Benard cells in free convection in horizontal fluid layers, Bends: Benzaldehyde: Benzene: Benzoic acid: Benzonitrile: Benzophenone: Benzyl alcohol: Benzyl chloride: Berenson equation for pool film boiling from a horizontal surface, Bergles, Arthur E, Bernoulli equation, application to flow across cylinders, Bimetallic tubes: Binary mixtures: Bingham fluid (non-Newtonian), Biofouling, Biot number: Biphenyl: Bismarck A, Black liquor, in pulp and paper industry, fouling of heat exchangers by, Black surface: Blackbody radiation, Blades, in scraped surface heat exchangers, Blake-Carmen-Kozeny equation, Blasius equation for friction factor, Blenkin, R, Blunt bodies, drag coefficients for, Boilers: Boiling: Boiling curve: Boiling length: Boiling number, definition, Boiling point, normal, Boiling range (in multicomponent mixtures): Boiling surface in boiling in vertical tubes, Boiling Water Reactor (BWR), fouling problems in, Bolted channel head in shell-and-tube exchanger, Bolted cone head in shell-and-tube heat exchanger, Bolted joints, thermal contact resistance in, Bolting, Bolting of flanges in shell-and-tube heat exchangers, Boltzmann's constant, Bonnet head, in shell-and-tube heat exchanger, Borishanski, V M, Borishanski correlation for nucleate pool boiling, Bott, T R, Boundary layer: Boussinesq approximations: Boussinesq number, definition, Bowring correlations for critical heat flux, Bracket supports for heat exchangers: Brauner, N, Brazed plate exchanger, Brazing in plate fin heat exchanger construction, Bricks, drying of, Brine recirculation, in multistage flash-evaporation, Brinkman number, Brittle fracture, Bromine: Bromley equation for film boiling from horizontal cylinders, Bromobenzene: Bromoethane: Bromomethane: Bromotrifluoromethane (Refrigerant 13B1): Brush and cage system, for fouling mitigation, BS 5500 code for mechanical design of shell-and-tube heat exchangers (see also PD 5500), Bubble crowding as mechanism of critical heat flux, Bubble flow: Bubbles: Bulk viscosity, Bundle-induced convection in kettle reboilers, Bundle layout, in condensers Buoyancy effects: Buoyancy-induced flow in channels, free convective heat transfer with, Busemann-Crocco integral, application in boundary layer equations, 1,2-Butadiene: 1,3-Butadiene: Butane: 1-Butanol: 2-Butanol: Butene-1: cis-2-Butene: trans-2-Butene: Butterworth, D, Butyl acetate: t-Butyl alcohol: Butylamine: Butylbenzene: n-Butylbenzene: n-Butylcyclohexane: Butylcyclopentane: Butylene oxide: Butyr-aldehyde: Butyric acid: Butyronitrile: Bypass (shell-and-tube bundle):

Index

HEDH
A B
Baffle leakage in shell-and-tube heat exchangers: Baffles in shell-and-tube heat exchangers: Baker flow regime map for horizontal gas-liquid flow, Balance equation (applied to complete equipment), Band dryer: Bandel and Schlunder correlations, for boiling in horizontal tubes, Basket-type evaporator, Barbosa, J R Jr, Bateman, G, Bayonet tube heat exchangers, constructional features of, Bayonet tube evaporators, Beaton, C F, Beer-Lambert law, Bejan, A, Bell-Delaware method for shell-side heat transfer and pressure drop in shell-and-tube heat exchangers, Bell and Ghaly method for calculation of multicomponent condensation, Benard cells in free convection in horizontal fluid layers, Bends: Benzaldehyde: Benzene: Benzoic acid: Benzonitrile: Benzophenone: Benzyl alcohol: Benzyl chloride: Berenson equation for pool film boiling from a horizontal surface, Bergles, Arthur E, Bernoulli equation, application to flow across cylinders, Bimetallic tubes: Binary mixtures: Bingham fluid (non-Newtonian), Biofouling, Biot number: Biphenyl: Bismarck A, Black liquor, in pulp and paper industry, fouling of heat exchangers by, Black surface: Blackbody radiation, Blades, in scraped surface heat exchangers, Blake-Carmen-Kozeny equation, Blasius equation for friction factor, Blenkin, R, Blunt bodies, drag coefficients for, Boilers: Boiling: Boiling curve: Boiling length: Boiling number, definition, Boiling point, normal, Boiling range (in multicomponent mixtures): Boiling surface in boiling in vertical tubes, Boiling Water Reactor (BWR), fouling problems in, Bolted channel head in shell-and-tube exchanger, Bolted cone head in shell-and-tube heat exchanger, Bolted joints, thermal contact resistance in, Bolting, Bolting of flanges in shell-and-tube heat exchangers, Boltzmann's constant, Bonnet head, in shell-and-tube heat exchanger, Borishanski, V M, Borishanski correlation for nucleate pool boiling, Bott, T R, Boundary layer: Boussinesq approximations: Boussinesq number, definition, Bowring correlations for critical heat flux, Bracket supports for heat exchangers: Brauner, N, Brazed plate exchanger, Brazing in plate fin heat exchanger construction, Bricks, drying of, Brine recirculation, in multistage flash-evaporation, Brinkman number, Brittle fracture, Bromine: Bromley equation for film boiling from horizontal cylinders, Bromobenzene: Bromoethane: Bromomethane: Bromotrifluoromethane (Refrigerant 13B1): Brush and cage system, for fouling mitigation, BS 5500 code for mechanical design of shell-and-tube heat exchangers (see also PD 5500), Bubble crowding as mechanism of critical heat flux, Bubble flow: Bubbles: Bulk viscosity, Bundle-induced convection in kettle reboilers, Bundle layout, in condensers Buoyancy effects: Buoyancy-induced flow in channels, free convective heat transfer with, Busemann-Crocco integral, application in boundary layer equations, 1,2-Butadiene: 1,3-Butadiene: Butane: 1-Butanol: 2-Butanol: Butene-1: cis-2-Butene: trans-2-Butene: Butterworth, D, Butyl acetate: t-Butyl alcohol: Butylamine: Butylbenzene: n-Butylbenzene: n-Butylcyclohexane: Butylcyclopentane: Butylene oxide: Butyr-aldehyde: Butyric acid: Butyronitrile: Bypass (shell-and-tube bundle):
C D E F G H I J K L M N O P Q R S T U V W X Y Z

Conective Boiling Inside Horizontal Tubes

DOI 10.1615/hedhme.a.000194

2.7 BOILING AND EVAPORATION
2.7.4 Convective boiling inside straight horizontal and inclined tubes, tubes with bends and helically coiled tubes

Horizontal tubes are often used in waste heat boilers, refrigerant evaporators, and a number of other types of heat exchange equipment. For the sake of compactness, the horizontal sections are often relatively short in length and connected by return bends to form so-called serpentines; alternatively, the tube may be formed into a helical coil. It is therefore convenient to consider the influence of bends and coils on heat transfer rates in this section.

A common feature of flows in non-vertical rubes is that of departure from axial symmetry in both flow and heat transfer. However, the nature and magnitude of the effects arising from this departure from symmetry vary with flow rate and with the type of geometry. In what follows, we will deal in turn with horizontal tubes (Section A), inclined tubes (Section B), tubes with bends (Section C) and, finally, helical coils (Section D).

A. Horizontal tubes

Heat transfer rates in horizontal tubes differ from those in vertical tubes to the extent that the gravitational forces cause an asymmetric flow pattern. A useful review has been given by Butterworth and Robertson (1977). Because the differences in behavior from that in a vertical tube are associated directly with the occurrence of dry portions of the tube perimeter, we shall consider this aspect first.

(a) Flow patterns and heat transfer

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here