Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
McNaught, J M, Macdonald equation, for fixed-bed pressure drop, Mach number, Macleod-Sugden method for surface tension Macrolayer consumption model for critical heat flux in pool boiling, Maddox, R N Magnetic fields, effect on properties of rheologically complex materials, Magnetic devices, for fouling mitigation, Magnetohydrodynamcs, inaugmentation of heat transfer in microfluidic systems, Margarine manufacture, crystallization of edible oils and fats in, scraped surface heat exchangers for, Marlotherm, heat transfer media, Martensitic stainless steels, Martin, H Martinelli and Boelter equations for combined free and forced convection, Martinelli and Nelson correlations: Mass absorption coefficient, Mass extinction coefficient, Mass fraction, in multicomponent mixtures, Mass scattering coefficient, Mass transfer: Mass transfer coefficient: Materials of construction, for heat exchangers, Low temperature operation, ASME VIII code guidelines for, Matovosian, Robert, Matrix inversion techniques, in radiative heat transfer, Maximum drag reduction Maximum velocities (in shell-and-tube heat exchangers) Maxwell model, for non-Newtonian fluid, Maxwell-Stefan equations, for multicomponent diffusion, Maxwell's equations, for electromagnetic radiation, Mean beam length concept, in radiative heat transfer: Mean phase content, Mean temperature difference: Measurement of fouling resistance, Mechanical design of heat exchangers: Mechanical draft cooling towers, Mechanical loads, specifications in EN13445, Mechanical vapour compression cycles in refrigeration, Mediatherm, heat transfer medium, Melo, L F, Melting, thermal conduction in, Melting point: Mercury: Merilo correlation, for critical heat flux in horizontal tubes, Merkel's equation, in cooling tower design, Mertz, R, Metais and Eckert diagrams, for regimes of convection: Metals: Metallurgical industry, kilns and furnaces for, Metastable equilibrium, of vapor and liquid, Methane: Methanol: Methyl acetate: Methylacetylene: Methyl acrylate: Methyl amine n-Methylaniline: Methyl benzoate: 2-Methyl-1,3-Butadiene (Isoprene): 2-Methylbutane (isopentane): Methylbutanoate: 2-Methyl-2-butene: Methylcyclohexane: Methylcyclopentane: Methylethylketone: Methyl formate: Metallurgical slag, use of submerged combustion in reprocessing of, Methyl fluorate: 2-Methylhexane: Methylisobutylketone: Methylmercaptan: 1-Methylnaphthalene: 2-Methylnaphthalene: 2-Methylpentane: 3-Methylpentane: 2-Methylpropane (isobutane): 2-Methylpropene: Methyl propionate: Methylpropylether: Methylpropyl ketone: Methyl salicylate: Methyl-t-butyl ether: Microbubbles, for drag reduction, Microchannels (see also microfluidics) Micro-fin tubes: Microfluidics, enhancement of heat transfer in, Mie scattering, in pulverized coal combustion, Miller, C J Miller, E R Mineral oils, as heat transfer media, physical properties of, Mineral wool production, submerged combustion systems for, Minimum fluidization velocity, Minimum heat flux in pool boiling: Minimum tubeside velocity, in shell-and-tube heat exchangers, Minimum velocity for fluidization, Minimum wetting rate, for binary mixtures, Mirror-image concept, in radiative heat transfer, Mirrors, spectral characteristics of reflectance from, Mishkinis, D, Mist flow: Mitigation of fouling, Mixed convection occurrence in horiozntal circular pipe, Metais and Eckert diagram for, Mixing (shell-side), in twisted tube heat exchangers, Mixing length, in turbulent flow, Mixtures: Modelling, of fouling: Models, theory of, Modulus of elasticity: Moffat, R S M, Molecular gas radiation properties, Molecular weight: Mollier chart, for humid air, Momentum equation: Monitoring, on line, of fouling, Monochloroacetic acid: Monte Carlo methods, in radiative heat transfer, Moody chart: Morris, M Mostinski correlations: Moving bed, heat transfer to, Muchowski, E, Mueller, A C Muller-Steinhagen, H Multicomponent mixtures: Multidimensional systems, heat conduction in, Multiflux methods, for radiative heat transfer in nonisothermal gases, Multipass shell-and-tube heat exchangers, Multiphase fluid flow and pressure drop: Multiple duties, in plate heat exchangers, Multiple effect evaporation, Multiple hairpin heat exchanger, Multistage flash evaporation (MSF) Multizone model, for furnaces,

Index

HEDH
A B C D E F G H I J K L M
McNaught, J M, Macdonald equation, for fixed-bed pressure drop, Mach number, Macleod-Sugden method for surface tension Macrolayer consumption model for critical heat flux in pool boiling, Maddox, R N Magnetic fields, effect on properties of rheologically complex materials, Magnetic devices, for fouling mitigation, Magnetohydrodynamcs, inaugmentation of heat transfer in microfluidic systems, Margarine manufacture, crystallization of edible oils and fats in, scraped surface heat exchangers for, Marlotherm, heat transfer media, Martensitic stainless steels, Martin, H Martinelli and Boelter equations for combined free and forced convection, Martinelli and Nelson correlations: Mass absorption coefficient, Mass extinction coefficient, Mass fraction, in multicomponent mixtures, Mass scattering coefficient, Mass transfer: Mass transfer coefficient: Materials of construction, for heat exchangers, Low temperature operation, ASME VIII code guidelines for, Matovosian, Robert, Matrix inversion techniques, in radiative heat transfer, Maximum drag reduction Maximum velocities (in shell-and-tube heat exchangers) Maxwell model, for non-Newtonian fluid, Maxwell-Stefan equations, for multicomponent diffusion, Maxwell's equations, for electromagnetic radiation, Mean beam length concept, in radiative heat transfer: Mean phase content, Mean temperature difference: Measurement of fouling resistance, Mechanical design of heat exchangers: Mechanical draft cooling towers, Mechanical loads, specifications in EN13445, Mechanical vapour compression cycles in refrigeration, Mediatherm, heat transfer medium, Melo, L F, Melting, thermal conduction in, Melting point: Mercury: Merilo correlation, for critical heat flux in horizontal tubes, Merkel's equation, in cooling tower design, Mertz, R, Metais and Eckert diagrams, for regimes of convection: Metals: Metallurgical industry, kilns and furnaces for, Metastable equilibrium, of vapor and liquid, Methane: Methanol: Methyl acetate: Methylacetylene: Methyl acrylate: Methyl amine n-Methylaniline: Methyl benzoate: 2-Methyl-1,3-Butadiene (Isoprene): 2-Methylbutane (isopentane): Methylbutanoate: 2-Methyl-2-butene: Methylcyclohexane: Methylcyclopentane: Methylethylketone: Methyl formate: Metallurgical slag, use of submerged combustion in reprocessing of, Methyl fluorate: 2-Methylhexane: Methylisobutylketone: Methylmercaptan: 1-Methylnaphthalene: 2-Methylnaphthalene: 2-Methylpentane: 3-Methylpentane: 2-Methylpropane (isobutane): 2-Methylpropene: Methyl propionate: Methylpropylether: Methylpropyl ketone: Methyl salicylate: Methyl-t-butyl ether: Microbubbles, for drag reduction, Microchannels (see also microfluidics) Micro-fin tubes: Microfluidics, enhancement of heat transfer in, Mie scattering, in pulverized coal combustion, Miller, C J Miller, E R Mineral oils, as heat transfer media, physical properties of, Mineral wool production, submerged combustion systems for, Minimum fluidization velocity, Minimum heat flux in pool boiling: Minimum tubeside velocity, in shell-and-tube heat exchangers, Minimum velocity for fluidization, Minimum wetting rate, for binary mixtures, Mirror-image concept, in radiative heat transfer, Mirrors, spectral characteristics of reflectance from, Mishkinis, D, Mist flow: Mitigation of fouling, Mixed convection occurrence in horiozntal circular pipe, Metais and Eckert diagram for, Mixing (shell-side), in twisted tube heat exchangers, Mixing length, in turbulent flow, Mixtures: Modelling, of fouling: Models, theory of, Modulus of elasticity: Moffat, R S M, Molecular gas radiation properties, Molecular weight: Mollier chart, for humid air, Momentum equation: Monitoring, on line, of fouling, Monochloroacetic acid: Monte Carlo methods, in radiative heat transfer, Moody chart: Morris, M Mostinski correlations: Moving bed, heat transfer to, Muchowski, E, Mueller, A C Muller-Steinhagen, H Multicomponent mixtures: Multidimensional systems, heat conduction in, Multiflux methods, for radiative heat transfer in nonisothermal gases, Multipass shell-and-tube heat exchangers, Multiphase fluid flow and pressure drop: Multiple duties, in plate heat exchangers, Multiple effect evaporation, Multiple hairpin heat exchanger, Multistage flash evaporation (MSF) Multizone model, for furnaces,
N O P Q R S T U V W X Y Z

Fluidised beds

DOI 10.1615/hedhme.a.000203

2.8 GAS-SOLID SYSTEMS
2.8.4 Fluidized beds

A. Introduction

The overall fluid dynamic behavior and the local flow Structure of gas-solid fluidized beds are outlined in Section 148. Section 172 deals with fluid-to-particle (i.e., single-phase) convective heat transfer. More detailed descriptions of the basic principles and technical applications of fluidization may be found, e.g., in the books by Davidson et al. (1985), Kunii and Levenspiel (1969), Zabrodsky (1966), and Botterill (1975).

Heat exchanger elements such as plates, tubes, coils, or bundles of tubes are frequently used directly inside a flutdized-bed reactor, as shown schematically in Figure 1, or in a separate fluid bed heat exchanger Reh et al. (1983) in order to remove or add the appropriate amount of thermal energy to keep the gas-solid system at a desired level of temperature.

Figure 1 Fluidized bed with heat exchanger

The problem of heat transfer to fluidized beds of solid particles was treated for the first time in Mickley and Trilling’s pioneering paper in (1949). Since then, many interesting facts about heat transfer between gas fluidized beds of solid particles and heat exchanger surfaces have been discovered through experimental work. As an example, Figure 2 shows a typical result from experiments carried out by Wunder and Mersmann (1979) in a test setup similar to the one used by Mickley and Trilling about 30 years previously.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here