Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of

Index

HEDH
A
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of
B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Surface Radiation Characteristics

DOI 10.1615/hedhme.a.000205

2.9 HEAT TRANSFER BY RADIATION
2.9.2 Surface radiation characteristics

A. Introduction to surface characteristics

To the thermal designer, surface radiation characteristics are numbers that must be entered into a computer in order to get answers to the questions put to the computer about the size, orientation, or spacing of elements; material selection; and so forth. The designer hopes that values of these characteristics can be found in a handbook or data compilation. At times, however, the handbook leaves the designer unsatisfied. It lists no value for a given material or such a large range of values that the designer realizes that a test measurement is in order. Thereupon it becomes apparent that many different kinds of tests can be conducted; many different numbers can be obtained. Which test or set of tests is to be run? How is a single number to be extracted from the test results? What do the numbers that are listed in the handbook mean? Are they really applicable?

It is apparent that two categories of radiation characteristics must he distinguished: (1) model characteristics used to model surface behavior in a computer program or calculation scheme, and (2) real characteristics that describe how the surface really docs behave. This section begins with a review of real characteristics and their measurements, reviews the electromagnetic theory of reflection, and concludes by examining the use of surface characteristics in thermal design.

The nomenclature used for surface radiation characteristics varies considerably in the literature. One question that often occurs is the meaning of an “ivity” ending versus an “ance” ending. Worthing, of the U.S. National Bureau of Standards, at one time suggested using “ivity” for an intrinsic property of a pure, perfectly polished and annealed specimen, and “ance” for surfaces having roughness, surface oxide layers, or other nonideal features. Various workers have followed the suggestion at one time or another, and others have not. The “ivity” ending used here has no special meaning and may be regarded as interchangeable with the “ance” ending.

B. Absorption and emission characteristics

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here