Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Baffle leakage in shell-and-tube heat exchangers: Baffles in shell-and-tube heat exchangers: Baker flow regime map for horizontal gas-liquid flow, Balance equation (applied to complete equipment), Band dryer: Bandel and Schlunder correlations, for boiling in horizontal tubes, Basket-type evaporator, Barbosa, J R Jr, Bateman, G, Bayonet tube heat exchangers, constructional features of, Bayonet tube evaporators, Beaton, C F, Beer-Lambert law, Bejan, A, Bell-Delaware method for shell-side heat transfer and pressure drop in shell-and-tube heat exchangers, Bell and Ghaly method for calculation of multicomponent condensation, Benard cells in free convection in horizontal fluid layers, Bends: Benzaldehyde: Benzene: Benzoic acid: Benzonitrile: Benzophenone: Benzyl alcohol: Benzyl chloride: Berenson equation for pool film boiling from a horizontal surface, Bergles, Arthur E, Bernoulli equation, application to flow across cylinders, Bimetallic tubes: Binary mixtures: Bingham fluid (non-Newtonian), Biofouling, Biot number: Biphenyl: Bismarck A, Black liquor, in pulp and paper industry, fouling of heat exchangers by, Black surface: Blackbody radiation, Blades, in scraped surface heat exchangers, Blake-Carmen-Kozeny equation, Blasius equation for friction factor, Blenkin, R, Blunt bodies, drag coefficients for, Boilers: Boiling: Boiling curve: Boiling length: Boiling number, definition, Boiling point, normal, Boiling range (in multicomponent mixtures): Boiling surface in boiling in vertical tubes, Boiling Water Reactor (BWR), fouling problems in, Bolted channel head in shell-and-tube exchanger, Bolted cone head in shell-and-tube heat exchanger, Bolted joints, thermal contact resistance in, Bolting, Bolting of flanges in shell-and-tube heat exchangers, Boltzmann's constant, Bonnet head, in shell-and-tube heat exchanger, Borishanski, V M, Borishanski correlation for nucleate pool boiling, Bott, T R, Boundary layer: Boussinesq approximations: Boussinesq number, definition, Bowring correlations for critical heat flux, Bracket supports for heat exchangers: Brauner, N, Brazed plate exchanger, Brazing in plate fin heat exchanger construction, Bricks, drying of, Brine recirculation, in multistage flash-evaporation, Brinkman number, Brittle fracture, Bromine: Bromley equation for film boiling from horizontal cylinders, Bromobenzene: Bromoethane: Bromomethane: Bromotrifluoromethane (Refrigerant 13B1): Brush and cage system, for fouling mitigation, BS 5500 code for mechanical design of shell-and-tube heat exchangers (see also PD 5500), Bubble crowding as mechanism of critical heat flux, Bubble flow: Bubbles: Bulk viscosity, Bundle-induced convection in kettle reboilers, Bundle layout, in condensers Buoyancy effects: Buoyancy-induced flow in channels, free convective heat transfer with, Busemann-Crocco integral, application in boundary layer equations, 1,2-Butadiene: 1,3-Butadiene: Butane: 1-Butanol: 2-Butanol: Butene-1: cis-2-Butene: trans-2-Butene: Butterworth, D, Butyl acetate: t-Butyl alcohol: Butylamine: Butylbenzene: n-Butylbenzene: n-Butylcyclohexane: Butylcyclopentane: Butylene oxide: Butyr-aldehyde: Butyric acid: Butyronitrile: Bypass (shell-and-tube bundle):

Index

HEDH
A B
Baffle leakage in shell-and-tube heat exchangers: Baffles in shell-and-tube heat exchangers: Baker flow regime map for horizontal gas-liquid flow, Balance equation (applied to complete equipment), Band dryer: Bandel and Schlunder correlations, for boiling in horizontal tubes, Basket-type evaporator, Barbosa, J R Jr, Bateman, G, Bayonet tube heat exchangers, constructional features of, Bayonet tube evaporators, Beaton, C F, Beer-Lambert law, Bejan, A, Bell-Delaware method for shell-side heat transfer and pressure drop in shell-and-tube heat exchangers, Bell and Ghaly method for calculation of multicomponent condensation, Benard cells in free convection in horizontal fluid layers, Bends: Benzaldehyde: Benzene: Benzoic acid: Benzonitrile: Benzophenone: Benzyl alcohol: Benzyl chloride: Berenson equation for pool film boiling from a horizontal surface, Bergles, Arthur E, Bernoulli equation, application to flow across cylinders, Bimetallic tubes: Binary mixtures: Bingham fluid (non-Newtonian), Biofouling, Biot number: Biphenyl: Bismarck A, Black liquor, in pulp and paper industry, fouling of heat exchangers by, Black surface: Blackbody radiation, Blades, in scraped surface heat exchangers, Blake-Carmen-Kozeny equation, Blasius equation for friction factor, Blenkin, R, Blunt bodies, drag coefficients for, Boilers: Boiling: Boiling curve: Boiling length: Boiling number, definition, Boiling point, normal, Boiling range (in multicomponent mixtures): Boiling surface in boiling in vertical tubes, Boiling Water Reactor (BWR), fouling problems in, Bolted channel head in shell-and-tube exchanger, Bolted cone head in shell-and-tube heat exchanger, Bolted joints, thermal contact resistance in, Bolting, Bolting of flanges in shell-and-tube heat exchangers, Boltzmann's constant, Bonnet head, in shell-and-tube heat exchanger, Borishanski, V M, Borishanski correlation for nucleate pool boiling, Bott, T R, Boundary layer: Boussinesq approximations: Boussinesq number, definition, Bowring correlations for critical heat flux, Bracket supports for heat exchangers: Brauner, N, Brazed plate exchanger, Brazing in plate fin heat exchanger construction, Bricks, drying of, Brine recirculation, in multistage flash-evaporation, Brinkman number, Brittle fracture, Bromine: Bromley equation for film boiling from horizontal cylinders, Bromobenzene: Bromoethane: Bromomethane: Bromotrifluoromethane (Refrigerant 13B1): Brush and cage system, for fouling mitigation, BS 5500 code for mechanical design of shell-and-tube heat exchangers (see also PD 5500), Bubble crowding as mechanism of critical heat flux, Bubble flow: Bubbles: Bulk viscosity, Bundle-induced convection in kettle reboilers, Bundle layout, in condensers Buoyancy effects: Buoyancy-induced flow in channels, free convective heat transfer with, Busemann-Crocco integral, application in boundary layer equations, 1,2-Butadiene: 1,3-Butadiene: Butane: 1-Butanol: 2-Butanol: Butene-1: cis-2-Butene: trans-2-Butene: Butterworth, D, Butyl acetate: t-Butyl alcohol: Butylamine: Butylbenzene: n-Butylbenzene: n-Butylcyclohexane: Butylcyclopentane: Butylene oxide: Butyr-aldehyde: Butyric acid: Butyronitrile: Bypass (shell-and-tube bundle):
C D E F G H I J K L M N O P Q R S T U V W X Y Z

Introduction

DOI 10.1615/hedhme.a.000233

2.14.1 Introduction

A. Background

A considerable amount of energy is used in the pumping of fluids in turbulent flow through pipeline systems. Clearly, there is a potential benefit in such systems if the drag (i.e. the pressure drop) could be reduced below the value dictated by the normal friction factor relationships. Drag reduction is also important in the motion of objects (such as ships or submarines) through fluids. The search for means of reducing drag has been pursued actively for many decades. Drag reduction can be achieved by adding materials (polymers, surfactants, bubbles) to the fluids or by modifying the surface of the solid with which the fluid is in contact. The objective of this introductory section is to briefly review the various means of drag reduction. More detailed information on the more important methodologies is given in the succeeding sections.

There have been extensive publications on the subject of drag reduction and the literature on drag reduction probably now extends to several thousand papers and the magnitude of the task of considering every source will be appreciated. In this Section and the succeeding ones, the objective has been to consider a sufficient number of sources to pick out the key phenomena and prediction methods. Reflecting the large size of the literature on the subject, a number of review articles have been written and have been studied as part of the current exercise. These include the reviews by Lumley (1969), Virk (1975), Berman (1978), Hoyt (1989), and Pazwash (1984). In a report from the British Hydrodynamics Research Association (BHRA), White (1975) lists 1,009 publications on drag reduction, though these include a (small) number of papers on drag reduction methods such as compliant surfaces. Most papers have been concerned with polymers and surfactants as drag reduction promoters but it should be stressed that suspended particles can also act to reduce drag (Kane, 1989). It should also be noted that drag reduction with high molecular weight substances also occurs in nature; fish slimes, which produce drag reduction for swimming fish, contain such substances.

The main emphasis in this and the succeeding sections is on the use of drag reduction technologies to reduce the pressure drop in flow in pipes. The percentage drag reduction for pipe flow is defined as:

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here