Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Cabin heater, Caetano, EF Calcium carbonate, fouling of heat exchangers by, Calcium sulphate, fouling of heat exchangers by, CALFLO, heat transfer media, Calorically perfect gas, CANDU Reactor, fouling problems in, Carbon dioxide: Carbon disulfide: Carbon monoxide: Carbon steel: Carbon-manganese steels Carbon-molybdenum steels, Carbon tetrachloride: Carbonyl sulfide: Carboxylic acids: Carnot cycle in refrigeration, Carnot factor, Carreau fluid (non-Newtonian), Carryover of solids in fluidized beds, Cashman, B L, Cast iron, thermal and mechanical properties, Cavitation as source of damage in heat exchangers, Cell method, for heat exchanger effectiveness, Cement kilns, CEN code for pressure vessels, Centrifugal dryer, Ceramics Certification of heat exchangers, Chan, S H, Channel emissivity, Chapman-Rubescin formula for viscosity variation with temperature, Chemical exergy, Chemical formulas of commonly used fluids Chemical industry, fouling of heat exchangers in, Chemical reactions, exergy analysis of, Chemical reaction fouling, Chen correlation for forced convective boiling, Chen method, for enthalpy of vaporisation, Chenoweth, J M, Chevron troughs as corrugation design in plate heat exchangers, Chillers, construction features of, Chilton-Colburn analogy, Chisholm, D Chisholm correlations: Chlorine: Chloroacetic acid: Chlorobenzene: Chlorobutane: Chlorodifluoromethane (see Refrigerant 22) 1-Chloro-1,1-difluoroethane (Refrigerant 142b): Chloroethane (Refrigerant 160): Chloromethane (Refrigerant 40): Chloropentane: 1,2-Chloropentafluoroethane (Refrigerant 115): Chloroprene (2-Chloro-1,3-butadiene): 1-Chloropropane: 2-Chloropropane: m-Chlorotoluene: o-Chlorotoluene: Chlorotrifluoroethylene: Chlorotrifluoromethane (see Refrigerant 13) Chromium-molybdenum steels, Chudnovsky, Y, Chugging flow (gas-liquid), in shell-and-tube heat exchangers, Chung et al method, for viscosity of low pressure gases, Church and Prausnitz methods: Churchill, S W, Churchill and Chu correlations for free convective heat transfer: Churn flow, regions of occurrence of, Circles, radiative heat transfer shape factors between parallel coaxial, Circular girth flanges, design according to ASME VIII code, Circulating fluidized beds, Circulation, modes of in free convection: in enclosures heated from below, CISE correlations for void fractions, Clausius-Clapeyron relationship: Cleaning: Climbing film evaporator, Closed circuit cooling towers, Coalescence of bubbles in fluidized beds, Coatings for corrosion protection Cocurrent flow: Codes, mechanical design: Cogeneration Colburn and Drew method for binary vapor condensation, Colburn and Hougen method for condensation in presence of noncondensable gases Colburn equation for single-phase heat transfer outside tube banks, Colburn j factor: Colebrook-White equation for friction factor in rough circular pipe, Coles, law of the wake, Collier, J G, Combined free and forced convection heat transfer: Combined heat and mass transfer, Combining flow, loss coefficients in, Combustion model for furnaces, Compact heat exchangers (see Plate fin heat exchangers) Compartment dryers, Composite curves, in the pinch analysis method for heat exchanger network analysis: Compressed liquids, density of: Compressible flow: Compression, exergy analysis of Compressive stress, in heat exchanger tubes, Computer-aided design, of evaporators, Computer program for Monte Carlo calculations of radiative heat transfer, Computer simulation, of fouling, Computer software for mechanical design, Concentration, choice of evaporator type for, Concentric spheres, free convective heat transfer in, Concurrency corrections in plate heat exchangers, Condensation: Concrete, lightweight, submerged combustion system for, Condensation curves: Condenser/preheater tubes, in multistage flash evaporation, Condensers: Conduction, heat: Conductors, thermal conductivity of, Cones, under internal pressure, EN13445 guidelines for, Cones, vertical: Conical shells, mechanical design of: Conjugate radiation interactions Connors equation for fluid elastic instability, Conservation equations: Constantinon and Gani method, for estimating normal boiling point, Contact angle, Contact resistance: Continuity equation: Continuum model, for fluids, Continuum theories, for non-Newtonian fluids, Contraction, sudden, pressure drop in: Control: Control volume method, in finite difference solutions for conduction, Convection, interaction of radiation with, Convection effects, on heat transfer in kettle reboilers, Convective heat transfer, single-phase: Conversion factors: Conveyor, gravity: Cooling curves, in condensation, Cooling towers: Cooling water fouling, Cooper correlation, for nucleate boiling, Cooper, Anthony, Copper, thermal and mechanical properties, Copper alloys, Correlation, general nature of, Corresponding states principle Corrosion: Corrugation design, for plate heat exchangers Costing of heat exchangers: Countercurrent flow: Coupled thermal fields, in transient conduction, Cowie, R C, Crank-Nicolson differencing scheme, in finite difference method, Creeping flow, in combined free and forced convection around immersed bodies, m-Cresol: o-Cresol: p-Cresol: Crevice corrosion, in stainless steels, Critical constants Critical density, of commonly used fluids, Critical flow, in gas-liquid systems, Critical heat flux: Critical pressure: Critical Rayleigh number, in free convection, Critical temperature: Critical velocity, in stratification in bends and horizontal tubes, Critical volume (see also Critical density) Cross counterflow heat exchangers, Crossflow: Crude oil, fouling of heat exchangers: Cryogenic plant, entropy generation in, Crystallization Crystallization fouling, Curved ducts: Cut-and-twist factor, in enhancement of heat transfer in double pipe heat exchangers, C-value method for heat exchanger costing, Cycling, of expansion bellows, Cyclobutane: Cyclohexane: Cyclohexanol: Cyclohexene: Cyclopentane: Cyclopentene: Cyclopropane: Cylinders: Cylindrical contacts, thermal contact resistance in, Cylindrical coordinates, finite difference equations for conduction in, Cylindrical shell, analytical basis of code rules for,

Index

HEDH
A B C
Cabin heater, Caetano, EF Calcium carbonate, fouling of heat exchangers by, Calcium sulphate, fouling of heat exchangers by, CALFLO, heat transfer media, Calorically perfect gas, CANDU Reactor, fouling problems in, Carbon dioxide: Carbon disulfide: Carbon monoxide: Carbon steel: Carbon-manganese steels Carbon-molybdenum steels, Carbon tetrachloride: Carbonyl sulfide: Carboxylic acids: Carnot cycle in refrigeration, Carnot factor, Carreau fluid (non-Newtonian), Carryover of solids in fluidized beds, Cashman, B L, Cast iron, thermal and mechanical properties, Cavitation as source of damage in heat exchangers, Cell method, for heat exchanger effectiveness, Cement kilns, CEN code for pressure vessels, Centrifugal dryer, Ceramics Certification of heat exchangers, Chan, S H, Channel emissivity, Chapman-Rubescin formula for viscosity variation with temperature, Chemical exergy, Chemical formulas of commonly used fluids Chemical industry, fouling of heat exchangers in, Chemical reactions, exergy analysis of, Chemical reaction fouling, Chen correlation for forced convective boiling, Chen method, for enthalpy of vaporisation, Chenoweth, J M, Chevron troughs as corrugation design in plate heat exchangers, Chillers, construction features of, Chilton-Colburn analogy, Chisholm, D Chisholm correlations: Chlorine: Chloroacetic acid: Chlorobenzene: Chlorobutane: Chlorodifluoromethane (see Refrigerant 22) 1-Chloro-1,1-difluoroethane (Refrigerant 142b): Chloroethane (Refrigerant 160): Chloromethane (Refrigerant 40): Chloropentane: 1,2-Chloropentafluoroethane (Refrigerant 115): Chloroprene (2-Chloro-1,3-butadiene): 1-Chloropropane: 2-Chloropropane: m-Chlorotoluene: o-Chlorotoluene: Chlorotrifluoroethylene: Chlorotrifluoromethane (see Refrigerant 13) Chromium-molybdenum steels, Chudnovsky, Y, Chugging flow (gas-liquid), in shell-and-tube heat exchangers, Chung et al method, for viscosity of low pressure gases, Church and Prausnitz methods: Churchill, S W, Churchill and Chu correlations for free convective heat transfer: Churn flow, regions of occurrence of, Circles, radiative heat transfer shape factors between parallel coaxial, Circular girth flanges, design according to ASME VIII code, Circulating fluidized beds, Circulation, modes of in free convection: in enclosures heated from below, CISE correlations for void fractions, Clausius-Clapeyron relationship: Cleaning: Climbing film evaporator, Closed circuit cooling towers, Coalescence of bubbles in fluidized beds, Coatings for corrosion protection Cocurrent flow: Codes, mechanical design: Cogeneration Colburn and Drew method for binary vapor condensation, Colburn and Hougen method for condensation in presence of noncondensable gases Colburn equation for single-phase heat transfer outside tube banks, Colburn j factor: Colebrook-White equation for friction factor in rough circular pipe, Coles, law of the wake, Collier, J G, Combined free and forced convection heat transfer: Combined heat and mass transfer, Combining flow, loss coefficients in, Combustion model for furnaces, Compact heat exchangers (see Plate fin heat exchangers) Compartment dryers, Composite curves, in the pinch analysis method for heat exchanger network analysis: Compressed liquids, density of: Compressible flow: Compression, exergy analysis of Compressive stress, in heat exchanger tubes, Computer-aided design, of evaporators, Computer program for Monte Carlo calculations of radiative heat transfer, Computer simulation, of fouling, Computer software for mechanical design, Concentration, choice of evaporator type for, Concentric spheres, free convective heat transfer in, Concurrency corrections in plate heat exchangers, Condensation: Concrete, lightweight, submerged combustion system for, Condensation curves: Condenser/preheater tubes, in multistage flash evaporation, Condensers: Conduction, heat: Conductors, thermal conductivity of, Cones, under internal pressure, EN13445 guidelines for, Cones, vertical: Conical shells, mechanical design of: Conjugate radiation interactions Connors equation for fluid elastic instability, Conservation equations: Constantinon and Gani method, for estimating normal boiling point, Contact angle, Contact resistance: Continuity equation: Continuum model, for fluids, Continuum theories, for non-Newtonian fluids, Contraction, sudden, pressure drop in: Control: Control volume method, in finite difference solutions for conduction, Convection, interaction of radiation with, Convection effects, on heat transfer in kettle reboilers, Convective heat transfer, single-phase: Conversion factors: Conveyor, gravity: Cooling curves, in condensation, Cooling towers: Cooling water fouling, Cooper correlation, for nucleate boiling, Cooper, Anthony, Copper, thermal and mechanical properties, Copper alloys, Correlation, general nature of, Corresponding states principle Corrosion: Corrugation design, for plate heat exchangers Costing of heat exchangers: Countercurrent flow: Coupled thermal fields, in transient conduction, Cowie, R C, Crank-Nicolson differencing scheme, in finite difference method, Creeping flow, in combined free and forced convection around immersed bodies, m-Cresol: o-Cresol: p-Cresol: Crevice corrosion, in stainless steels, Critical constants Critical density, of commonly used fluids, Critical flow, in gas-liquid systems, Critical heat flux: Critical pressure: Critical Rayleigh number, in free convection, Critical temperature: Critical velocity, in stratification in bends and horizontal tubes, Critical volume (see also Critical density) Cross counterflow heat exchangers, Crossflow: Crude oil, fouling of heat exchangers: Cryogenic plant, entropy generation in, Crystallization Crystallization fouling, Curved ducts: Cut-and-twist factor, in enhancement of heat transfer in double pipe heat exchangers, C-value method for heat exchanger costing, Cycling, of expansion bellows, Cyclobutane: Cyclohexane: Cyclohexanol: Cyclohexene: Cyclopentane: Cyclopentene: Cyclopropane: Cylinders: Cylindrical contacts, thermal contact resistance in, Cylindrical coordinates, finite difference equations for conduction in, Cylindrical shell, analytical basis of code rules for,
D E F G H I J K L M N O P Q R S T U V W X Y Z

Surface Performance Data

DOI 10.1615/hedhme.a.000299



3.9.4 Surface performance data

Figure 297.1 shows six commonly used surface geometries for plate-fin, compact heat exchangers. Typical fin pitches are 300 to 800 fins per meter, although as many as 1,200 fins per meter are used in automotive applications. Because of the small hydraulic diameter and low density of gases, these surfaces are usually operated with 500 < ReDh < 1,500 (hydraulic diameter basis). Although increased performance will exist at higher Reynolds numbers (turbulent regime), fan-power limitations generally limit operation to the above low-Reynolds number range. To be effective, an enhancement technique must be applied to low-Reynolds number flows.

The heat transfer and friction data are normally presented in the form j = St Pr(2/3), and f versus the Reynolds number (Re) based on the hydraulic diameter. This approach is somewhat arbitrary, because several variations of one basic type of surface geometry will generally not correlate on the j and f versus Re basis. This is because geometric variables, other than the hydraulic diameter, may have a significant effect on surface performance. For example, in laminar duct flows, j and f are influenced by the channel shape, or aspect ratio. Because the values of j, f, and Re are dimensionless, the test data are applicable to surfaces of any hydraulic diameter, provided that geometric similarity is maintained.

A standard reference for the heat transfer and friction data of plate-fin heat exchanger surfaces is the book by Kays and London (1984), Compact Heat Exchangers. This book gives j and f versus Reynolds number plots for 52 different plate-fin surface geometries. Similar data are also included for tube banks, fin-tube heat exchangers, and crossed-rod matrices. However, the Kays and London (1984) data are all prior to 1964. Creswick et al. (1964) present a very complete report of existing data as of 1964, some of which does not appear in Kays and London. Since the original publication of the Kays and London book in 1964, additional performance data have been published. Recent additions include the following:

  1. Perforated surfaces (Mondt and Siegla, 1974; Shah, 1975; Shah, 1975; Liang and Yang, 1975; Pucci et al., 1967)

  2. Offset-strip fins for gases (Shah, 1975; Liang and Yang, 1975; Pucci et al., 1967; London and Shah, 1968)

  3. Offset-strip fins for liquids (London and Shah, 1968; Sparrow et al., 1977; Mochizuki and Yagi, 1977; Dubrovskii and Fedotva, 1972)

  4. Louvered fins (Smith, 1972; Wong and Smith, 1966; Davenport, 1983; Aoki et al., 1989; Fujikake et al., 1983; Chang and Wang, 1996)

  5. Pin fins and wire screens (Theoclitus, 1966; Hamaguchi et al., 1983; Torikoshi and Kawabata, 1989)

  6. Wavy and herringbone fins (Kays and London, 1984; Goldstein and Sparrow, 1977; Ali and Ramadhyani, 1992; O'Brien and Sparrow, 1982; Sparrow and Hossfeld, 1984; Molki and Yuen, 1986; Dong et al., 2007)

  7. Vortex generators (Brockmeier, 1993; Tiggelbeck et al., 1994)

  8. Metal foam (Kim et al., 2000; Klett et al., 2000; Bhattacharya and Mahajan, 2002; Asby et al., 2000; Calmidi and Mahajan, 2000)

A compilation of j and f versus Re plots is not presented here because of space limitations. Such data are readily available in the book by Kays and London (1984) and the above references. Webb and Kim (2005) provide detail on many of the studies listed above. Substantial work has been done to develop correlations of j and f versus Re. This work is discussed in Section 301.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here