Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Saddle supports, for heat exchangers, Safety factors, Safety, of heat exchangers: Salicyl aldehyde: Salts, heat transfer, as heat transfer media, Sand roughness, equivalent, Santotherm, heat transfer media, Sastri and Rao correlation for surface tension, Saturated boiling: Saturated density: Saturated fluids, tables of physical properties, Saturation pressure, Saturation temperature, Saunders, E A D Sauer, H J Jr, Scale formation in heat exchangers, Scaling approximations, in nonisothermal gas radiation, Scattering bed models, for radiative heat transfer from surfaces, Scattering, interaction phenomena with, Scattering coefficient, Schack wide-band model, for gas radiation properties, Schick and Prausnitz method, for critical volume of mixtures, Schlunder, E U Schmidt, F W Schmidt correlation, for heat transfer in in-line banks of high fin tubes, Schmidt number, Schneider, G E, Schrock and Grossman correlations, for forced convective heat transfer in two-phase flow, Schunk, M Schwier, K, Scraped surfaces: Scaling devices, in shell-and-tube heat exchangers, Seawater physical properties, Seider-Tate equation, for heat transfer in heat exchangers, Selection of heat transfer equipment: Semiconductors, thermal conductivity, Separated flow model: Separation, exergy analysis for, Separators, for use in association with evaporators, Series solutions, for one-dimensional transient conduction, Serrated fins, in plate fin heat exchangers, Shah correlation for boiling, Shah correlation, for boiling in horizontal tubes, Shape factor, in radiative heat transfer between diffuse surfaces, Shear flow, of non-Newtonian fluids, Shear free flow, of non-Newtonian fluids, Shear rate, in fluid, Shear stress: Sheffield, J W, Shelf dryer, Shell-and-tube heat exchanger: Shell-to-baffle clearance, in shell-and-tube heat exchangers, Shells, for shell-and-tube heat exchangers: Sherwood number Shipes, K V, Short-tube vertical evaporator, Sigma phase embrittlement, of stainless steels, Silicate scales, in heat exchangers, Silicone oils, as heat transfer media, physical properties of, Silver method, for calculation of multicomponent condensation, Similarity theory, Simonis, V, Single-phase fluid flow: Single stage flash evaporation (SSF): Singularities, two-phase gas-liquid pressure drop across, Sink, in radiation: Skid-mounted units, specification of, Skin friction coefficient, Skrinska, A, Slab: Sleeves, internal, for expansion bellows, Slot: Slug flow: Slugging, in fluidized beds, Smith, A A, Smith, R, Smith, R A Smith, O, Snell's law, in radiation, Software, for code design, Solar absorber, Solar reflector, Soldered fins, in double pipe exchangers, Solid fuels, properties of, Solids circulation, in fluidized beds, Solid-gas flow: Solid-liquid flow: Solidification: Solids: Solids circulation, in fluidized beds, Soot blowing, Sound velocity: Source, in radiation: Spacers, in shell-and-tube heat exchangers, Spalding, D B, Sparging: Specific enthalpy, Specific entropy: Specific heat capacity, Specific internal energy, Specific volume: Specification of heat exchangers, Spectral absorptivity: Spectral emissivity, in gases, Specular surface, Specular-walled passages, radiative heat transfer in, Spheres: Spherical coordinates, for finite difference equations for conduction, Spherical shells: Spheroids (oblate and prolate), free convective heat transfer from, Spine fins: Spiral heat exchanger: Spirally fluted tubes: Sponge rubber balls, in fouling mitigation, Spray dryers, Sprays, in heat exchangers, Square ducts: Stable equilibrium, of vapor and liquid, Staggered tube banks: Stainless steels, Stanton number Startup: State diagram, for fluidized beds, Static mixers, in heat exchangers, Statically stable foams, Steam, dropwise condensation of, Steam tables, Steam turbine exhaust condensers, Steels, as material of construction, Stefan-Boltzmann constant, Stefan's law, for blackbody radiation, Stegmaier, W, Steiner and Taborek correlation, for forced convective boiling, Stephan and Korner correlation, for boiling of binary mixtures, Stiffeners, PD5500 code guidelines for, Stiffeners, against external pressure, EN13445 guidance on, Stirred beds, heat transfer to, Stirred reactor model, for furnaces, Stone's strongly implicit method, Straight fins (longitudinal fins): Stratified gas-liquid flow: Stratified liquid-liquid-gas flow: Steam analysis methods, for shell-side heat transfer and pressure drop in shell-and-tube heat exchangers, Stress, compressive, in heat exchanger tubes, Stress corrosion cracking, of stainless steels, Stress equation models, for turbulent boundary layers, Stress-strain curve, for solids, Stress tensor: Stresses: Strip baffles, in tube bundles with longitudinal flow, Strouhal number, Subchannel analysis, for critical heat flux in rod bundles, Subcooled boiling: Subcooling: Sublayer, viscous, Submerged combustion, Successive over-under relaxation method for solution of implicit equations, Suction: Suction line exchangers in refrigeration, Sulfur: Sulfur compounds (organic): Sulfur dioxide: Sulfur hexafluoride: Sulfur trioxide: Supercritical fluids: Superficial velocity, in multiphase flow, Superheated gases: Superheated liquid, in metastable state, Superheated vapor, condensation of, on vertical surface, Supersaturation, as cause of fogging in condensers: Suppression of nucleate boiling, Surface catalysis, in augmentation of heat transfer, Surface condensers, Surface finish: Surface, hydraulically smooth, Surface material, effect on fouling, Surface models, in radiative heat transfer, Surface modification for drag reduction, Surface temperature, effect on fouling, Surface tension: Surfactants, in drag reduction, Suspension, radiation interaction phenomena in, Sutherland formula, for viscosity variation with temperature, Sutterby fluid (non-Newtonian), free convective heat transfer to, Swirling flow, in augmentation of heat transfer, Synthetic heat transfer media, Synthetic mixture heat transfer media,

Index

HEDH
A B C D E F G H I J K L M N O P Q R S
Saddle supports, for heat exchangers, Safety factors, Safety, of heat exchangers: Salicyl aldehyde: Salts, heat transfer, as heat transfer media, Sand roughness, equivalent, Santotherm, heat transfer media, Sastri and Rao correlation for surface tension, Saturated boiling: Saturated density: Saturated fluids, tables of physical properties, Saturation pressure, Saturation temperature, Saunders, E A D Sauer, H J Jr, Scale formation in heat exchangers, Scaling approximations, in nonisothermal gas radiation, Scattering bed models, for radiative heat transfer from surfaces, Scattering, interaction phenomena with, Scattering coefficient, Schack wide-band model, for gas radiation properties, Schick and Prausnitz method, for critical volume of mixtures, Schlunder, E U Schmidt, F W Schmidt correlation, for heat transfer in in-line banks of high fin tubes, Schmidt number, Schneider, G E, Schrock and Grossman correlations, for forced convective heat transfer in two-phase flow, Schunk, M Schwier, K, Scraped surfaces: Scaling devices, in shell-and-tube heat exchangers, Seawater physical properties, Seider-Tate equation, for heat transfer in heat exchangers, Selection of heat transfer equipment: Semiconductors, thermal conductivity, Separated flow model: Separation, exergy analysis for, Separators, for use in association with evaporators, Series solutions, for one-dimensional transient conduction, Serrated fins, in plate fin heat exchangers, Shah correlation for boiling, Shah correlation, for boiling in horizontal tubes, Shape factor, in radiative heat transfer between diffuse surfaces, Shear flow, of non-Newtonian fluids, Shear free flow, of non-Newtonian fluids, Shear rate, in fluid, Shear stress: Sheffield, J W, Shelf dryer, Shell-and-tube heat exchanger: Shell-to-baffle clearance, in shell-and-tube heat exchangers, Shells, for shell-and-tube heat exchangers: Sherwood number Shipes, K V, Short-tube vertical evaporator, Sigma phase embrittlement, of stainless steels, Silicate scales, in heat exchangers, Silicone oils, as heat transfer media, physical properties of, Silver method, for calculation of multicomponent condensation, Similarity theory, Simonis, V, Single-phase fluid flow: Single stage flash evaporation (SSF): Singularities, two-phase gas-liquid pressure drop across, Sink, in radiation: Skid-mounted units, specification of, Skin friction coefficient, Skrinska, A, Slab: Sleeves, internal, for expansion bellows, Slot: Slug flow: Slugging, in fluidized beds, Smith, A A, Smith, R, Smith, R A Smith, O, Snell's law, in radiation, Software, for code design, Solar absorber, Solar reflector, Soldered fins, in double pipe exchangers, Solid fuels, properties of, Solids circulation, in fluidized beds, Solid-gas flow: Solid-liquid flow: Solidification: Solids: Solids circulation, in fluidized beds, Soot blowing, Sound velocity: Source, in radiation: Spacers, in shell-and-tube heat exchangers, Spalding, D B, Sparging: Specific enthalpy, Specific entropy: Specific heat capacity, Specific internal energy, Specific volume: Specification of heat exchangers, Spectral absorptivity: Spectral emissivity, in gases, Specular surface, Specular-walled passages, radiative heat transfer in, Spheres: Spherical coordinates, for finite difference equations for conduction, Spherical shells: Spheroids (oblate and prolate), free convective heat transfer from, Spine fins: Spiral heat exchanger: Spirally fluted tubes: Sponge rubber balls, in fouling mitigation, Spray dryers, Sprays, in heat exchangers, Square ducts: Stable equilibrium, of vapor and liquid, Staggered tube banks: Stainless steels, Stanton number Startup: State diagram, for fluidized beds, Static mixers, in heat exchangers, Statically stable foams, Steam, dropwise condensation of, Steam tables, Steam turbine exhaust condensers, Steels, as material of construction, Stefan-Boltzmann constant, Stefan's law, for blackbody radiation, Stegmaier, W, Steiner and Taborek correlation, for forced convective boiling, Stephan and Korner correlation, for boiling of binary mixtures, Stiffeners, PD5500 code guidelines for, Stiffeners, against external pressure, EN13445 guidance on, Stirred beds, heat transfer to, Stirred reactor model, for furnaces, Stone's strongly implicit method, Straight fins (longitudinal fins): Stratified gas-liquid flow: Stratified liquid-liquid-gas flow: Steam analysis methods, for shell-side heat transfer and pressure drop in shell-and-tube heat exchangers, Stress, compressive, in heat exchanger tubes, Stress corrosion cracking, of stainless steels, Stress equation models, for turbulent boundary layers, Stress-strain curve, for solids, Stress tensor: Stresses: Strip baffles, in tube bundles with longitudinal flow, Strouhal number, Subchannel analysis, for critical heat flux in rod bundles, Subcooled boiling: Subcooling: Sublayer, viscous, Submerged combustion, Successive over-under relaxation method for solution of implicit equations, Suction: Suction line exchangers in refrigeration, Sulfur: Sulfur compounds (organic): Sulfur dioxide: Sulfur hexafluoride: Sulfur trioxide: Supercritical fluids: Superficial velocity, in multiphase flow, Superheated gases: Superheated liquid, in metastable state, Superheated vapor, condensation of, on vertical surface, Supersaturation, as cause of fogging in condensers: Suppression of nucleate boiling, Surface catalysis, in augmentation of heat transfer, Surface condensers, Surface finish: Surface, hydraulically smooth, Surface material, effect on fouling, Surface models, in radiative heat transfer, Surface modification for drag reduction, Surface temperature, effect on fouling, Surface tension: Surfactants, in drag reduction, Suspension, radiation interaction phenomena in, Sutherland formula, for viscosity variation with temperature, Sutterby fluid (non-Newtonian), free convective heat transfer to, Swirling flow, in augmentation of heat transfer, Synthetic heat transfer media, Synthetic mixture heat transfer media,
T U V W X Y Z

Classification and Selection

DOI 10.1615/hedhme.a.000331

3.13.2 Classification and selection

Among the various requirements that determine the design concept of a dryer, the transportation of the product through the dryer may be very important, since it is closely related to the residence time. Second, the initial state of the product (liquid, paste, solid, powder, granular, sheet, etc.) also influences the design concept to a great extent. Therefore a matrix is presented in Table 1 that correlates the residence time and the initial state of the product (liquid to solid).

Table 1 Classification of dryers with respect to the physical state of the product and the residence time of the product in the dryer

Residence TimeWet, moist material
LiquidPasteSolid
PowderyGranularClumpySheet
Short
(< 1 min)


Spray dryerSpray dryerFlash dryerFlash dryerFlash dryerCylindrical dryer
Drum dryerDrum dryerGrinding dryer(Grinding dryer)
(Agitated film dryer)(Agitated film
dryer)
Moderate
(1 min–1 h)
















Screw conveyer dryerContinuous band dryerContinuous band dryer
Paddle dryerRoto louver dryer
Horizontal cylindrical dryerVibrating dryer
(Kneading dryer)Kneading dryer
Vibrating dryerFluidized-bed dryer
Rotating shelf dryerRotating shelf dryerRotating shelf dryerRotating shelf dryer
Pan dryer
Plate dryer
(Paddle dryer)Paddle dryerPaddle dryer
Horizontal cylindrical dryerHorizontal cylindrical dryerHorizontal cylindrical dryer
Steam-tube rotary dryerSteam-tube rotary dryer
Rotary dryer (with lifters)Rotary dryer (with lifters)Rotary dryer (with lifters)
Long
(> 1h)



Tray dryerTray dryerTray dryerTray dryer
Truck dryerTruck dryerTruck dryerTruck dryer
Tunnel dryerTunnel dryerTunnel dryerTunnel dryer
Continuous band dryer

A brief description of various types of dryers, including some indication of the specific energy consumption per kilogram of evaporated water, is also given in Table 2.

Table 2 Capacity and energy consumption for various types of dryers

aFigure 1Figure 15 show more or less schematically the design of the various types of dryers in common use.
Figure aTypeEvaporation rate,
kg H2O/h per m2 or per m3
Energy consumption,
kJ/kg evaporated H2O
1Drying loft20/m25,000–6,000
2Compartment dryer (normal pressure)0.1–15/m25,000–13,000
3Compartment dryer (vacuum)0.1–1/m23,000–5,000
4Tunnel dryer5,500–6,500
5Band dryer4,000–6,000
6Jet impingement dryer50/m25,000–7,000
7Shelf dryer4–8/m23,500–9,000
8Rotary dryer30–80/m34,600–9,200
9Centrifugal dryer90/m33,000–4,000
10Fluidized-bed dryer
11Pneumatic bed dryerParticle diameter
dp = 0.5 mm: 100/m3
dp = 1 mm: 20/m3
dp = 5 mm: 4/m3
4,600–9,200
12Spiral-tube dryer500/m33,500
13Spray dryer1–50/m34,600–11,500
14Drum dryer for pasty materials7–25/m23,200–6,500
15Holoflite dryer5–15/m2 (0.5–2.5 low moisture content)3,700–6,500

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here