Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Rabas and Taborek correlation, for heat transfer in banks of low fin tubes, Rackett equation (modified) for liquid density Radiation: Radiation shields, in radiation heat transfer, Radiation source analysis, Radiative heat transfer: Radiators, automotive, construction, Radiometers, application in gas radiation property measurement, Radiosity, Stephan's law for, Radiosity-irradiation formulations in radiative heat transfer, Rankine cycle in refrigeration, Rao, B K Raoult's law for partial pressure, Rating of heat exchangers, Rayleigh instability, in free convection, Rayleigh number Reay, D Reboilers: Reciprocal mode integrating sphere, for reflection and transmission measurements in radiation, Rectangles: Rectangular ducts: Rectangular enclosures, free convective heat transfer in: Rectangular fins, for plate fin exchangers Reduced pressure, correlations for pool boiling using, Reference temperature: Refinery processes, fouling in, Reflection, of thermal radiation, from solid surfaces: Reflectivity, of solid surfaces, Reflectometer, heated cavity, Reflux condensers, Refractories, density of, Refractory surfaces, Refrigerants: Refrigerant 11 (Trichlorofluoromethane): Refrigerant 12 (Dichlorodifluoromethane): Refrigerant 13 (Chlorotrifluoromethane): Refrigerant 21 (Dichlorofluoromethane): Refrigerant 22 (Chlorodifluoromethane): Refrigerant 116: Refrigerant plant, entropy generation in, Refrigeration, heat transfer in, Regenerators and thermal energy storage, Regimes of heat transfer, in ducts, single phase flow, Reidel method, for predicting enthalpy of vaporisation, Reinforcing rings, for expansion bellows, Relaminarization, of turbulent flow, Reichenberg method, for effect of pressure on gas viscosity, Relief system design for shell-and-tube heat exchangers with tube side failure, Removal of fouling deposits: Renewable fuels, properties of, Renotherm, heat transfer medium, Repair, of expansion bellows, Residence times, in dryers: Resistance network analysis, Resistance (thermal) due to fouling: Reversible (minimum) work, in Reynolds number, Reynolds stress models, for turbulence, Rheologically complex materials, properties of: Rheological properties of drag reducing agents Rheology, shear flow experiments used in, Rhine, J M, Ribatski, G, Riblets for drag reduction, Richardson number, Richie, J M, Ring cells, in free convection, RODbaffles, in tube bundles with longitudinal flow, Rod bundles: Rohsenow correlation, for nucleate boiling, Roll cells, in free convection, Roller expansion, of tubes into tube sheets, Rose, J W, Rossby number, Rotary dryer, Rotating drums, heat transfer to particle bed in, Rotating surface, in an annular duct Rotation, as device for heat transfer augmentation, Roughness, surface: Rough walled passages, radiative heat transfer down, Rubber (sponge) balls, in fouling mitigation, Ryznar index for water quality,

Index

HEDH
A B C D E F G H I J K L M N O P Q R
Rabas and Taborek correlation, for heat transfer in banks of low fin tubes, Rackett equation (modified) for liquid density Radiation: Radiation shields, in radiation heat transfer, Radiation source analysis, Radiative heat transfer: Radiators, automotive, construction, Radiometers, application in gas radiation property measurement, Radiosity, Stephan's law for, Radiosity-irradiation formulations in radiative heat transfer, Rankine cycle in refrigeration, Rao, B K Raoult's law for partial pressure, Rating of heat exchangers, Rayleigh instability, in free convection, Rayleigh number Reay, D Reboilers: Reciprocal mode integrating sphere, for reflection and transmission measurements in radiation, Rectangles: Rectangular ducts: Rectangular enclosures, free convective heat transfer in: Rectangular fins, for plate fin exchangers Reduced pressure, correlations for pool boiling using, Reference temperature: Refinery processes, fouling in, Reflection, of thermal radiation, from solid surfaces: Reflectivity, of solid surfaces, Reflectometer, heated cavity, Reflux condensers, Refractories, density of, Refractory surfaces, Refrigerants: Refrigerant 11 (Trichlorofluoromethane): Refrigerant 12 (Dichlorodifluoromethane): Refrigerant 13 (Chlorotrifluoromethane): Refrigerant 21 (Dichlorofluoromethane): Refrigerant 22 (Chlorodifluoromethane): Refrigerant 116: Refrigerant plant, entropy generation in, Refrigeration, heat transfer in, Regenerators and thermal energy storage, Regimes of heat transfer, in ducts, single phase flow, Reidel method, for predicting enthalpy of vaporisation, Reinforcing rings, for expansion bellows, Relaminarization, of turbulent flow, Reichenberg method, for effect of pressure on gas viscosity, Relief system design for shell-and-tube heat exchangers with tube side failure, Removal of fouling deposits: Renewable fuels, properties of, Renotherm, heat transfer medium, Repair, of expansion bellows, Residence times, in dryers: Resistance network analysis, Resistance (thermal) due to fouling: Reversible (minimum) work, in Reynolds number, Reynolds stress models, for turbulence, Rheologically complex materials, properties of: Rheological properties of drag reducing agents Rheology, shear flow experiments used in, Rhine, J M, Ribatski, G, Riblets for drag reduction, Richardson number, Richie, J M, Ring cells, in free convection, RODbaffles, in tube bundles with longitudinal flow, Rod bundles: Rohsenow correlation, for nucleate boiling, Roll cells, in free convection, Roller expansion, of tubes into tube sheets, Rose, J W, Rossby number, Rotary dryer, Rotating drums, heat transfer to particle bed in, Rotating surface, in an annular duct Rotation, as device for heat transfer augmentation, Roughness, surface: Rough walled passages, radiative heat transfer down, Rubber (sponge) balls, in fouling mitigation, Ryznar index for water quality,
S T U V W X Y Z

Features Relating to Mechanical Design and Fabrication

DOI 10.1615/hedhme.a.000417

4.2.6 Features relating to mechanical design and fabrication

A. Barrels

The shell barrel must be straight and have no out-of-roundness, as a tightly fitting tube bundle must be inserted into it. Most shell and head barrels greater than about 450 mm in inside diameter are rolled from plate, as shown in Figure 1, and a complete shell barrel may comprise several smaller barrels, or strakes, welded together end to end. If there is any out-of-roundness, individual strakes are rerolled after welding the longitudinal seams. The longitudinal seams of adjoining strakes are always staggered. The inside diameter of a rolled shell should not exceed the design inside diameter by more than 3.2 mm (1/8 in) as determined by circumferential measurement. All internal welds must be made flush.

Figure 1 Rolling a shell barrel. Courtesy of Whessoe Heavy Engineering Ltd.,Darlington,England

When welding large nozzles to the shell, "sinkage" may occur at the nozzle/shell junction and effective measures, such as the use of temporary stiffening, must be taken to avoid it. Sinkage reduces the shell diameter at the nozzle/shell junction so that the baffle diameter must be reduced accordingly. The increased clearance between baffle and shell may result in reduced thermal performance.

Standard pipe less than 450 mm in diameter is usually available, and this will be used for the shell and head barrels instead of rolled plate. Depending on the fabricator's roll capacity, at thicknesses of the order of 80 mm and greater, or large thickness/diameter ratios, it may be necessary to use forged instead of rolled barrels.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here