Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F-correction method: F-factor charts and equations for various heat exchanger configurations, F-factor method: F-type shells: Fabrication: Failure modes of heat exchangers, Falling films, direct contact heat transfer in, Falling film evaporator: Fanno flow, Fans in air-cooled heat exchangers: Fatigue as failure mode of a heat exchanger Fatigue life, of expansion bellows, Fawcett, R Fedor's method, for critical temperature, Fenghour, A Ferritic stainless steels, as material of construction, Fick's law for diffusion, Film boiling: Film model, condenser design by Film temperature, definition of for turbulent flow over flat plate, Films in heat exchangers, Filmwise condensation: Fincotherm, heat transfer medium, Finite-difference equations: Finite difference methods: Finite-element methods: Fins (see also Extended surfaces): Fire-tube boiler, Fired heaters, Fires, room, radiation interaction phenomena in, Firsova, E V, Fixed beds: Fixed tubesheet, shell-and-tube exchangers: Flanges, mechanical design of in heat exchangers, Flash evaporation Flat absorber of thermal radiation, Flat heads: Flat plate: Flat reflector of thermal radiation, Floating head designs for shell-and-tube heat exchangers: Flooded type evaporator, in refrigeration, Flooding phenomena: Flow distribution: Flow-induced vibration, Flow regimes: Flow stream analysis method for segmentally baffled shell and tube heat exchangers, Flue gases, fouling by, Fluid elastic instability as source of flow-induced vibration, Fluid flow, lost work in, Fluid mechanics, Eulerian formulation for, Fluid-to-particle heat transfer in fluidized beds, Fluidized bed dryer: Fluidized bed gravity conveyors, Fluidized beds: Fluids: Fluorine: Fluorobenzene: Fluoroethane (Refrigerant 161): Fluoromethane (Refrigerant 41): Fluted tubes: Flux method, for modeling radiation in furnaces, Flux relationships in heat exchangers, Fogging in condensation Food processing, fouling of heat exchangers in, Forced flow reboilers: Formaldehyde: Formamide: Formic acid: Forster and Zuber correlation for nucleate boiling, Fouling, Foam systems, heat transfer in, Four phase flows, examples, Fourier law for conduction Fourier number (Fo): Frames for plate heat exchangers, France, guide to national practice for mechanical design, Free convection: Free-fall velocity, of particles, Free-stream turbulence, effect on flow over cylinders, Freeze protection of air-cooled heat exchangers, Freezing, of condensate in condensers Fresnel relations in reflection of radiation, Fretting corrosion, Friction factor: Friction multipliers in gas-liquid flow: Friction velocity, definition, Friedel correlation for frictional pressure gradient in straight channels, Froude number: Fuels, properties of, Fuller, R K, Furan: Furfural: Furnaces: Fusion welding, of tubes into tubesheets in shell-and-tube heat exchangers,

Index

HEDH
A B C D E F
F-correction method: F-factor charts and equations for various heat exchanger configurations, F-factor method: F-type shells: Fabrication: Failure modes of heat exchangers, Falling films, direct contact heat transfer in, Falling film evaporator: Fanno flow, Fans in air-cooled heat exchangers: Fatigue as failure mode of a heat exchanger Fatigue life, of expansion bellows, Fawcett, R Fedor's method, for critical temperature, Fenghour, A Ferritic stainless steels, as material of construction, Fick's law for diffusion, Film boiling: Film model, condenser design by Film temperature, definition of for turbulent flow over flat plate, Films in heat exchangers, Filmwise condensation: Fincotherm, heat transfer medium, Finite-difference equations: Finite difference methods: Finite-element methods: Fins (see also Extended surfaces): Fire-tube boiler, Fired heaters, Fires, room, radiation interaction phenomena in, Firsova, E V, Fixed beds: Fixed tubesheet, shell-and-tube exchangers: Flanges, mechanical design of in heat exchangers, Flash evaporation Flat absorber of thermal radiation, Flat heads: Flat plate: Flat reflector of thermal radiation, Floating head designs for shell-and-tube heat exchangers: Flooded type evaporator, in refrigeration, Flooding phenomena: Flow distribution: Flow-induced vibration, Flow regimes: Flow stream analysis method for segmentally baffled shell and tube heat exchangers, Flue gases, fouling by, Fluid elastic instability as source of flow-induced vibration, Fluid flow, lost work in, Fluid mechanics, Eulerian formulation for, Fluid-to-particle heat transfer in fluidized beds, Fluidized bed dryer: Fluidized bed gravity conveyors, Fluidized beds: Fluids: Fluorine: Fluorobenzene: Fluoroethane (Refrigerant 161): Fluoromethane (Refrigerant 41): Fluted tubes: Flux method, for modeling radiation in furnaces, Flux relationships in heat exchangers, Fogging in condensation Food processing, fouling of heat exchangers in, Forced flow reboilers: Formaldehyde: Formamide: Formic acid: Forster and Zuber correlation for nucleate boiling, Fouling, Foam systems, heat transfer in, Four phase flows, examples, Fourier law for conduction Fourier number (Fo): Frames for plate heat exchangers, France, guide to national practice for mechanical design, Free convection: Free-fall velocity, of particles, Free-stream turbulence, effect on flow over cylinders, Freeze protection of air-cooled heat exchangers, Freezing, of condensate in condensers Fresnel relations in reflection of radiation, Fretting corrosion, Friction factor: Friction multipliers in gas-liquid flow: Friction velocity, definition, Friedel correlation for frictional pressure gradient in straight channels, Froude number: Fuels, properties of, Fuller, R K, Furan: Furfural: Furnaces: Fusion welding, of tubes into tubesheets in shell-and-tube heat exchangers,
G H I J K L M N O P Q R S T U V W X Y Z

Shell-and-Tube Heat Exchanger Design to EN13445

DOI 10.1615/hedhme.a.000420

4.3 SHELL-AND-TUBE DESIGN CODES
4.3.3 Design to EN 13445

A. General

(a) Introduction

EN 13445 (European Committee for Standardisation, 2002) is a new pressure vessel code (in this case also a “standard”) written to go with the European Pressure Equipment Directive (Directive 97/22/EC, 1997) that came into full force on May 22 2002.

It was put together over a period of 10 years by CEN Technical Committee TC54. Various sub-committees, made up of members from the national delegations, looked after the individual parts. While it does not have behind it the history of the well known national codes it was written by those same experts who are responsible for maintaining the various national codes across Europe. Bringing together different points of view and insights has the obvious potential disadvantage of “lowest common denominator” writing, but it also makes it possible to bring together good new methods for all to use. In general the intention has been to include the best available methods in the new standard. The design section is notable for new methods based on limit analysis for a number of components, especially flanges and tubesheets.

As is usual with pressure vessel codes and standards, it is intended to “update” EN 13445 regularly. Errors will be discovered and more material will be added. As will be seen, there are some important gaps, notably in materials of construction.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here