Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
McNaught, J M, Macdonald equation, for fixed-bed pressure drop, Mach number, Macleod-Sugden method for surface tension Macrolayer consumption model for critical heat flux in pool boiling, Maddox, R N Magnetic fields, effect on properties of rheologically complex materials, Magnetic devices, for fouling mitigation, Magnetohydrodynamcs, inaugmentation of heat transfer in microfluidic systems, Margarine manufacture, crystallization of edible oils and fats in, scraped surface heat exchangers for, Marlotherm, heat transfer media, Martensitic stainless steels, Martin, H Martinelli and Boelter equations for combined free and forced convection, Martinelli and Nelson correlations: Mass absorption coefficient, Mass extinction coefficient, Mass fraction, in multicomponent mixtures, Mass scattering coefficient, Mass transfer: Mass transfer coefficient: Materials of construction, for heat exchangers, Low temperature operation, ASME VIII code guidelines for, Matovosian, Robert, Matrix inversion techniques, in radiative heat transfer, Maximum drag reduction Maximum velocities (in shell-and-tube heat exchangers) Maxwell model, for non-Newtonian fluid, Maxwell-Stefan equations, for multicomponent diffusion, Maxwell's equations, for electromagnetic radiation, Mean beam length concept, in radiative heat transfer: Mean phase content, Mean temperature difference: Measurement of fouling resistance, Mechanical design of heat exchangers: Mechanical draft cooling towers, Mechanical loads, specifications in EN13445, Mechanical vapour compression cycles in refrigeration, Mediatherm, heat transfer medium, Melo, L F, Melting, thermal conduction in, Melting point: Mercury: Merilo correlation, for critical heat flux in horizontal tubes, Merkel's equation, in cooling tower design, Mertz, R, Metais and Eckert diagrams, for regimes of convection: Metals: Metallurgical industry, kilns and furnaces for, Metastable equilibrium, of vapor and liquid, Methane: Methanol: Methyl acetate: Methylacetylene: Methyl acrylate: Methyl amine n-Methylaniline: Methyl benzoate: 2-Methyl-1,3-Butadiene (Isoprene): 2-Methylbutane (isopentane): Methylbutanoate: 2-Methyl-2-butene: Methylcyclohexane: Methylcyclopentane: Methylethylketone: Methyl formate: Metallurgical slag, use of submerged combustion in reprocessing of, Methyl fluorate: 2-Methylhexane: Methylisobutylketone: Methylmercaptan: 1-Methylnaphthalene: 2-Methylnaphthalene: 2-Methylpentane: 3-Methylpentane: 2-Methylpropane (isobutane): 2-Methylpropene: Methyl propionate: Methylpropylether: Methylpropyl ketone: Methyl salicylate: Methyl-t-butyl ether: Microbubbles, for drag reduction, Microchannels (see also microfluidics) Micro-fin tubes: Microfluidics, enhancement of heat transfer in, Mie scattering, in pulverized coal combustion, Miller, C J Miller, E R Mineral oils, as heat transfer media, physical properties of, Mineral wool production, submerged combustion systems for, Minimum fluidization velocity, Minimum heat flux in pool boiling: Minimum tubeside velocity, in shell-and-tube heat exchangers, Minimum velocity for fluidization, Minimum wetting rate, for binary mixtures, Mirror-image concept, in radiative heat transfer, Mirrors, spectral characteristics of reflectance from, Mishkinis, D, Mist flow: Mitigation of fouling, Mixed convection occurrence in horiozntal circular pipe, Metais and Eckert diagram for, Mixing (shell-side), in twisted tube heat exchangers, Mixing length, in turbulent flow, Mixtures: Modelling, of fouling: Models, theory of, Modulus of elasticity: Moffat, R S M, Molecular gas radiation properties, Molecular weight: Mollier chart, for humid air, Momentum equation: Monitoring, on line, of fouling, Monochloroacetic acid: Monte Carlo methods, in radiative heat transfer, Moody chart: Morris, M Mostinski correlations: Moving bed, heat transfer to, Muchowski, E, Mueller, A C Muller-Steinhagen, H Multicomponent mixtures: Multidimensional systems, heat conduction in, Multiflux methods, for radiative heat transfer in nonisothermal gases, Multipass shell-and-tube heat exchangers, Multiphase fluid flow and pressure drop: Multiple duties, in plate heat exchangers, Multiple effect evaporation, Multiple hairpin heat exchanger, Multistage flash evaporation (MSF) Multizone model, for furnaces,

Index

HEDH
A B C D E F G H I J K L M
McNaught, J M, Macdonald equation, for fixed-bed pressure drop, Mach number, Macleod-Sugden method for surface tension Macrolayer consumption model for critical heat flux in pool boiling, Maddox, R N Magnetic fields, effect on properties of rheologically complex materials, Magnetic devices, for fouling mitigation, Magnetohydrodynamcs, inaugmentation of heat transfer in microfluidic systems, Margarine manufacture, crystallization of edible oils and fats in, scraped surface heat exchangers for, Marlotherm, heat transfer media, Martensitic stainless steels, Martin, H Martinelli and Boelter equations for combined free and forced convection, Martinelli and Nelson correlations: Mass absorption coefficient, Mass extinction coefficient, Mass fraction, in multicomponent mixtures, Mass scattering coefficient, Mass transfer: Mass transfer coefficient: Materials of construction, for heat exchangers, Low temperature operation, ASME VIII code guidelines for, Matovosian, Robert, Matrix inversion techniques, in radiative heat transfer, Maximum drag reduction Maximum velocities (in shell-and-tube heat exchangers) Maxwell model, for non-Newtonian fluid, Maxwell-Stefan equations, for multicomponent diffusion, Maxwell's equations, for electromagnetic radiation, Mean beam length concept, in radiative heat transfer: Mean phase content, Mean temperature difference: Measurement of fouling resistance, Mechanical design of heat exchangers: Mechanical draft cooling towers, Mechanical loads, specifications in EN13445, Mechanical vapour compression cycles in refrigeration, Mediatherm, heat transfer medium, Melo, L F, Melting, thermal conduction in, Melting point: Mercury: Merilo correlation, for critical heat flux in horizontal tubes, Merkel's equation, in cooling tower design, Mertz, R, Metais and Eckert diagrams, for regimes of convection: Metals: Metallurgical industry, kilns and furnaces for, Metastable equilibrium, of vapor and liquid, Methane: Methanol: Methyl acetate: Methylacetylene: Methyl acrylate: Methyl amine n-Methylaniline: Methyl benzoate: 2-Methyl-1,3-Butadiene (Isoprene): 2-Methylbutane (isopentane): Methylbutanoate: 2-Methyl-2-butene: Methylcyclohexane: Methylcyclopentane: Methylethylketone: Methyl formate: Metallurgical slag, use of submerged combustion in reprocessing of, Methyl fluorate: 2-Methylhexane: Methylisobutylketone: Methylmercaptan: 1-Methylnaphthalene: 2-Methylnaphthalene: 2-Methylpentane: 3-Methylpentane: 2-Methylpropane (isobutane): 2-Methylpropene: Methyl propionate: Methylpropylether: Methylpropyl ketone: Methyl salicylate: Methyl-t-butyl ether: Microbubbles, for drag reduction, Microchannels (see also microfluidics) Micro-fin tubes: Microfluidics, enhancement of heat transfer in, Mie scattering, in pulverized coal combustion, Miller, C J Miller, E R Mineral oils, as heat transfer media, physical properties of, Mineral wool production, submerged combustion systems for, Minimum fluidization velocity, Minimum heat flux in pool boiling: Minimum tubeside velocity, in shell-and-tube heat exchangers, Minimum velocity for fluidization, Minimum wetting rate, for binary mixtures, Mirror-image concept, in radiative heat transfer, Mirrors, spectral characteristics of reflectance from, Mishkinis, D, Mist flow: Mitigation of fouling, Mixed convection occurrence in horiozntal circular pipe, Metais and Eckert diagram for, Mixing (shell-side), in twisted tube heat exchangers, Mixing length, in turbulent flow, Mixtures: Modelling, of fouling: Models, theory of, Modulus of elasticity: Moffat, R S M, Molecular gas radiation properties, Molecular weight: Mollier chart, for humid air, Momentum equation: Monitoring, on line, of fouling, Monochloroacetic acid: Monte Carlo methods, in radiative heat transfer, Moody chart: Morris, M Mostinski correlations: Moving bed, heat transfer to, Muchowski, E, Mueller, A C Muller-Steinhagen, H Multicomponent mixtures: Multidimensional systems, heat conduction in, Multiflux methods, for radiative heat transfer in nonisothermal gases, Multipass shell-and-tube heat exchangers, Multiphase fluid flow and pressure drop: Multiple duties, in plate heat exchangers, Multiple effect evaporation, Multiple hairpin heat exchanger, Multistage flash evaporation (MSF) Multizone model, for furnaces,
N O P Q R S T U V W X Y Z

Mechanical Design of Plate Heat Exchangers

DOI 10.1615/hedhme.a.000428

4.4 MECHANICAL DESIGN
4.4.2 Mechanical design of plate heat exchangers

A. General description

A plate heat exchanger (PHE) comprises a pack of spaced corrugated plates arranged such that the two heat exchanging fluids flow through alternate spaces in the pack. The corrugations maintain the gap between adjacent plates which are sealed against each other. These are nowadays several different technologies to effect a seal between the plates and to maintain the pack in a compressed state.

Normally plates are pressed and expensive tools are required for their production. Unlike shell-and-tube units, plates are produced in a limited number of sizes and are never custom made to individual requirements. However, the flexibility of their arrangement enables a particular duty to be easily handled by the correct selection of standard components.

B. Types of PHE’s

Listed below are some of the different types of PHE’s in operation today.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here