Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:

Index

HEDH
A B C D E F G H I J K L M N
Nahme-Griffith number, Nakashima, CY Nanoparticles, for heat transfer augmentation, Naphthalene: Napthenes: National practice, in mechanical design, guide to, Natural convection: Natural draft cooling towers: Natural frequency of tube vibration in heat exchangers, Navier-Stokes equation, Neon: Neopentane: Net free area, in double-pipe heat exchangers, Netherlands, guide to national mechanical design practice, Networks, of heat exchangers, pinch analysis method for design of, Neumann boundary conditions, finite difference method, Nickel, thermal and mechanical properties Nickel alloys, Nickel steels, Niessen, R, Nitric oxide: Nitriles: Nitrobenzene: Nitro derivatives: Nitroethane: Nitrogen: Nitrogen dioxide: Nitrogen peroxide: Nitromethane: m-Nitrotoluene: Nitrous oxide Noise: Nonadecane: Nonadecene: Nonane: Nonene: Nonanol: Nonaqueous fluids, critical heat flux in, Non-circular microchannels: Noncondensables: Nondestructive testing, of heat exchangers Nongray media, interaction phenomena with, Nonmetallic materials: Non-Newtonian flow: Nonparticipating media, radiation interaction in, Nonuniform heat flux, critical heat flux with, Non-wetting surfaces, in condensation augmentation, North, C, No-tubes-in-window shells, calculation of heat transfer and pressure drop in, Nozzles: Nowell, D G, Nucleate boiling: Nuclear industry, fouling problems in, Nucleation: Nucleation sites: Nuclei, formation in supersaturated vapor, Number of transfer units (NTU): Numerical methods: Nusselt: Nusselt-Graetz problem, in laminar heat transfer in ducts, Nusselt number:
O P Q R S T U V W X Y Z

Materials of Construction

DOI 10.1615/hedhme.a.000432

4.5.2 Materials of construction

The design codes and standards discussed in Section 4.3 list materials that may be used in heat exchangers. Other materials may be used subject to agreement between purchaser, inspecting authority, and the manufacturer; in general, design codes and standards specify minimum qualities of materials.

Materials and the corresponding design stresses to be used in conjunction with the TEMA heat exchanger standards are given in the ASME Boiler and Pressure Vessel Code, Section 8, Division 1. (Codes are mandatory; standards are recommended practice.)

In the case of the United Kingdom, the design stress values of recommended materials for heat exchangers are given in BS 5500.

In the F.R. Germany, the TUV (Technische überwachungs Verein) is the general approving body for heat exchangers (and many other products). Design methods for pressure vessels (including heat exchangers) are given in the A. D. Merkblätter, while the yield stress values for insertion in the A. D. Merkblatt formulas are obtained from the relevant DIN (Deutsche Normenanschuss) standard.

Before discussing the different metallic and non-metallic materials for heat exchangers, it will be useful to consider the product forms used for various shell-and-tube exchanger parts.

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here