Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of

Index

HEDH
A
Absorbing media, interaction phenomena in, Absorption of thermal radiation: Absorption coefficient, Absorption spectra in gases, Absorptivity: Acentric factor: Acetaldehyde: Acetic acid: Acetic anhydride: Acetone: Acetonitrile: Acetophenone: Acetylene: Acetylenes Ackerman correction factor in condensation, Acoustic methods, for fouling mitigation, Acoustic vibration of heat exchangers, Acrolein: Acrylic acid: Active systems for augmentation of heat transfer: Additives: Adiabatic flows, compressible, in duct, Admiralty brass, Advanced models for furnaces, Agitated beds, heat transfer to, Agitated vessels, Ahmad scaling method for critical heat flux in flow boiling of nonaqueous fluids, Air: Air-activated gravity conveyor, Air-cooled heat exchangers: Air preheaters, fouling in, Albedo for single scatter in radiation, Alcohols: Aldehydes: Aldred, D L, Allyl alcohol: Allyl chloride (-chloropropane) Alternating direction (ADR) method, for solution of implicit finite difference equations, Aluminum, spectral characteristics of anodized surfaces, Aluminum alloys, thermal and mechanical properties, Aluminium brass, Ambrose-Walton corresponding states method, for vapour pressure, Amides: Amines: Ammonia: tert-Amyl alcohol: Analogy between heat and mass and momentum transfer Analytical solution of groups, for calculation of thermodynamic Anelasticity, Angled tubes, use in increasing flooding rate in reflux condensation, Aniline: Anisotropy of elastic properties, Annular distributor in shell-and-tube heat exchangers, Annular ducts: Annular (radial) fins, efficiency Annular flow (gas-liquid): Annular flow (liquid-liquid), Annular flow (liquid-liquid-gas), Anti-foulants, Antoine equation, for vapour pressure, Aqueous solutions, as heat transfer media, Arc welding of tubes into tube sheets: Archimedes number, Area of tube outside surface in shell-and-tube heat exchangers: Argon: Arithmetic mean temperature difference, definition, Armstrong, Robert C Aromatics: ASME VIII code, for mechanical design of shell-and-tube heat exchangers: Assisted convection: Attachment, of fouling layers, Augmentation of heat transfer Austenitic stainless steels, Average phase velocity in multiphase flows, Axial flow reboilers, Axial wire attachments, for augmentation of condensation, Azeotropes, condensation of
B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Density of Pure Fluids

DOI 10.1615/hedhme.a.000499

5.1 PROPERTIES OF PURE FLUIDS
5.1.2 Density of pure fluids

A. Introduction

In this section are presented practical methods for the calculation of the density of pure gases and liquids as a function of temperature and pressure. The selected methods are quite accurate and relatively easy to use. They can easily be implemented using calculators or spreadsheet programs. The more elaborate thermodynamic models such as equations of state, which in principle allow the calculation of all the thermodynamic properties of single substances or mixtures, are beyond the scope of this article for their implementation would require the development of computer programs with lengthy testing periods.

B. Pure gases

(a) Corresponding states principle

Pitzer et al. (1955) have shown that the compression factor of a given substance at reduced temperature and reduced pressure can be expanded as a power series in the acentric factor ω. In practice, they restricted the expansion of the compression factor Z to the following linear form:

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here