Navigation by alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),

Index

HEDH
A B C D E
E-type shells in shell-and-tube heat exchangers: Ebert and Panchal equation, for crude oil fouling, Eckert number, Eddy viscosity: Eddy diffusivity, of heat, Edge, D, Edwards, D K EEC code for thermal design of heat exchangers, Effective diffusivity, Effective thermal conductivity of fixed beds, Effective tube length in shell-and-tube heat exchangers, Effectiveness of a heat exchanger: Efficiency of fins, Eicosane: Eicosene: Ejectors, in flash distillation plant, EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows Elastic properties of solids: El-Dessouky, H, Electrical enhancement processes, in heat transfer augmentation, Electric fields, effect on properties of rheologically complex materials, Electric fields, in augmentation of condensation, Electrical process heater, specification of, Electrokinetics, for heat transfer augmentation in microfluidic systems, Electromagnetic theory of radiation, Electrostatic fields in augmentation of heat transfer, Elements: Elhadidy relation between heat and momentum transfer, Embedding methods for radiative heat transfer in nonisothermal gases, Embittlement, of stainless steels, Emission of thermal radiation, in solids, Emissivity: Emitting media, interaction phenomena with, Emulsions, viscosity of, EN13445 (European Pressure Vessel Codes), design of heat exchangers to, Enclosures: Energy equation: Energy recovery, maximum, in heat exchanger network design, Enhanced surfaces, fouling in, Enhancement devices: Enlargements in pipes: Enthalpy: Entrainment in annular gas-liquid flow Entrance effects in heat and mass transfer: Entrance lengths, hydrodynamic in pipe flow, Entrance losses for tube inlet in shell-and-tube heat exchanger, Entry losses in plate heat exchangers, Entropy generation and minimisation Environmental impact, of fouling, Eotvos number: Epstein, N, Epstein matrix, for fouling, Equalizing rings, for expansion bellows, Equilibrium interphase: Equilibrium vapor nucleus, Equivalent sand roughness, Ergun equation, for pressure drop in fixed beds ESDU correlations: Esters: Ethane: Ethanol: Ethers: Ethyl acetate: Ethylacetylene: Ethylacrylate: Ethylamine: Ethylbenzene: Ethyl benzoate: Ethyl butanoate: Ethylcyclohexane: Ethylcyclopentane: Ethyl formate: Ethylene: Ethylene diamine: Ethylene glycol: Ethylene oxide: Ethylmercaptan: 1-Ethylnaphthalene: 2-Ethylnaphthalene: Ethyl proprionate: Ethyl propylether: Ettouney, H, Euler number: Eutectic mixtures, condensation of forming immiscible liquids, Evaporation: Evaporative crystallisers, Evaporators: Exergy, definition of, Exergy analysis, Exit losses for tubes in shell-and-tube exchanger, Expansion bellows, for shell-and-tube heat exchangers: EJMA (Expansion Joint Manufacturers Association), standards for Expansion joints, mechanical design of: Expansion of tubes into tube sheets: Expansion turbine, lost work in, Explosively clad plate, Explosive welding of tubes into tube sheets Explosive expansion joints, Extended surfaces (see also Fins) Externally induced convection, in kettle reboilers, Extinction coefficient, Extinction efficiency, Eyring fluid (non-Newtonian),
F G H I J K L M N O P Q R S T U V W X Y Z

Elastic Properties

DOI 10.1615/hedhme.a.000522

5.4 PROPERTIES OF SOLIDS
5.4.5 Elastic properties

A. Introduction

Solids deform when subjected to stresses. The strain is defined as the degree of distortion per unit length, e.g., the change in length per unit length of a wire when subjected to a tensile stress. The stress is defined as the applied force per unit area. A material is said to show perfectly elastic behavior when the stress-strain relationship is perfectly reversible. Furthermore if the strain is proportional to the applied stress then the behavior is known as linear elastic. Most engineering materials show approximately linear clastic behavior up to the onset of plastic deformation. Such behavior was originally described by Hooke and is therefore sometimes known as Hookean.

An important part of mechanical engineering design involves the computation of the distribution of strains in a structure when subject to the stresses imposed in service. Stresses may be imposed by fluid pressure or by fluid motion and also by nonuniform thermal expansion during changes in temperature. Elastic properties are traditionally regarded as being non-structure sensitive but there is one important aspect in which this is not true. The individual grains or crystals of metals are elastically anisotropic. Thus the elastic constants are a function of the orientation of the grain with respect to the orientation of the imposed stresses. The process of manufacture of components tends to introduce a certain degree of preferred orientation of the individual grains composing the structure and thus to introduce elastic anisotropy. It is probable that the existence of various degrees of preferred orientation in test specimens has led to the rather wide scatter in data for the clastic properties of metals and alloys. Because this scatter can introduce errors of as much as 20% in some cases in computing strains, the subject is dealt with in depth in this section. Table 531.3 should be regarded only as an example of the type of information in the literature. There is no reason to suppose, for example, that steels with 5-9% chromium should differ significantly in Young’s modulus from those containing slightly smaller or larger amounts of chromium as shown in that table.

Design codes require that stresses are less than the yield stress in a range in which structural materials are assumed to show linear elastic behavior. The behavior of real materials, however, is only approximately elastic so that on loading and unloading below the yield stress a narrow hysteresis loop is generated. For this reason materials have a nonzero damping capacity. The extent of the departure from elastic behavior becomes greater as the stress increases. Increases in the duration of loading and rise in temperature usually cause increased departure from elastic behavior. For many design purposes, perfect linear elastic behavior is assumed. The finer points of stress-strain behavior are included in this section since they could become very important. For example, the damping capacity of a heat exchanger tube might increase by an order of magnitude when the tube is pressurized. Similarly the elastic constants and damping capacity show significant changes when the temperature is increased in service, causing discrepancies between the behavior during testing cold and unpressurized and in service.

The present section therefore not only describes and defines the various ideal linear elastic moduli that are used in elementary engineering design but also indicates the major sources of error that can arise when the elastic behavior of real materials is not understood. The application of elastic properties in design and analytical procedures is discussed in Part 4 and includes calculation of stress-strain distributions in complex structures, linear elastic fracture mechanics, and vibration studies.

i.e.,

... You need a subscriptionOpen in a new tab. to view the full text of the article. If you already have the subscription, please login here